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ABSTRACT

Currently the design of highly parallel “"supercomputers" is
one of the most challenging problems in engineering.

The purpose of this thesis is to describe how the problem
was approached in the design, implementation and building of
a torus double transitive closure network of
microprocessors, wusing the T4l4 Transputer device as the
basic unit of computation.

Also compares the performance of the evolved model, from one
Transputer to the final stage of sixteen Transputers running
in parallel. All the programs and examples presented in this
thesis were implemented in the OCCAM2 Programming Language,
using the Transputer Development System, D700¢, BETA 2.0

release March 1987 compiler version.
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THESIS DISCLAIMER

The reader is cautioned that the computer programs developed
in this research may not have been exercised for all cases
cf interest. While the programs are free of known
computational and logical errors, they can not be considered
validated. Any application of these programs without
additional verification is at risk of the user.
Many terms wused in this thesis are registered trademarks of
commercial products. Instead of attempting to cite each
occurrence of a trademark, we list all registered trademarks
which appear in this thesis below the firm which holds the
trademark.
INMOS Group of Companies, Bristol, UK
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I. INTRODUCTION

A. BACKLROUND
1. The AEGIS Modeling Group at the NPS

The research interest of the AEGIS Modeling Group at
the NPS, which was created at the late 1970s, is to
investigate any possible alternatives to replace the U.S.
Navy's mid-1960 design AEGIS COMBAT SYSTEM, and the main
focus of attention 1is the AN/SPY-1A phased array radar
processing unit.

Bearing in mind this objective, at present 1in the
Transputer Lab, the main thrust is dedicated to exploring
the possibilities that the Transputer, a VLSI microprocessor
developed in the United Kingdom by the INMOS corporation.
could have in the update process of the AEGIS system
currently in wuse on the U.S. Ticinderoga class (CG-47)
Cruisers.

At present the Transputer Lab at the NPS consists of
five Zenith PC with B004 Tranputers boards incorporated, two
EUROCARD BOXES, one B0Ol Transputer board, one B002
Transputer board, two B007 Transputer boards for graphics,
four BO03 Transputer boards with T414 Transputers and two
B003 boards with T80C Transputers.




2, Considerations and Terminology about Parallelism

The design of parallel computers is a new frontier in
engineering. Since the device and technology is not expected
to increase computing power as fast as the increase in
demand, novel parallel architectures need to be designed.
This design is exciting and important to the future of the
computer weapons oriented industry and the national security
research projects 1in this field. Also as with most new
frontiers, it is often wild and chaotic due to the little
data and methodology to compare the many good designs
already in existence,

To help the reader to understand and get a good grasp
about parallelism here we have some terminology.

We will start with the basic discussion of terms and
concepts in computer architecture. While the readers may be
familiar with the terminology, some words were used
differently, therefore it is worthwhile to have a concise
statement of our use of the word.

We define a processor as a device able to be
programmed by a user to act on some data. a procedure as a
set of rules that a processor can follow to modify that
data, and a process as the execution of the procedure. The
Transputer 1s a microprocessor which includes a processor
and special instructions as well as hardware to provide a
maximum performance and optimal implementations of the OCCAM

model of concurrency and communications.
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The OCCAM programming language is the first language
to be based upon the concept of parallel, in addition to
sequential, execution. It provides automatic asynchronous
communication between concurrent processes and 1is the
assembly language of the Transputer, because the Transputer
executes the occam programs more or less directly.

A Transputer system is a.nonempty set of Transputers
including support components to connect them. A parallel
Transputer system or Transputer network for short, 1is a
collection of two or more Transputers that is built to work
in parallel. A Transputer network 1s no more powerful, in
terms of Turing computable procedures, than conventional
computers. We can characterize the networks of Transputers
by what they can do efficiently. So we will have two
fundamental types of Transputer networks: the special
purpose netwerk of Transputers designed for specific
applications and the multipurpose Transputer network which
is designed to execute most Turing computable procedures
efficiently. In this thesis we will refer to a multipurpose
Transputer network specifically designed to explore network
programming with shared global variables.

The architecture of a Transputer system 1s the view
of the hardwure seen by the (systems) programmer. Two
machines can have a different architecture if a programmer
can see a logical difference between them. A paradigm is a

set of architectures based on the same principles.
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The Von Neumann paradigm contains almost all
multipurpose computers. It is the very well-known paradigm
in which a controller, data, memory and (I/0) are
sequentially programmed in a fetch-execute cycle, and which
contains move, arithmetic, control, 1I/0, and also logic
instructions. The implementation or organization 1is the
block diagram of the computer which shows its memory,
processor, I1/0 and other components, and the realization is
the actual hardware of the machine. We will focus on
paradigms of parallel computers.

An architecture or paradigm is parameterized if, in
the view of the programmer, it has parameters that describe
it. Parallel computer architectures may have a paramster,
such as the number of processors or Transputers. We can
characterize parallel computer architectures as bounded if a
parameter such as the numbar c¢f processors can be
efficlently wused, and is 1limited or 1inductive if the
"inefficiency" of the machine follows some reasonable
(e.g., sublinear) function of the parameter as it increases
inductively (e.g., as we increase the number of processor
fromn ton + 1). In this thesis we are basically interested
in the inductive parallel architectures.

Two other parameters are the number of instruction
streams and the number of data streams. A single

instruction single data (SISD) stream computer is in general

a Von Neumann computer. A single instruction multiple data




(SIMD) stream computer system has one instruction streams
(Procedure) simultaneously operating on multiple data
streams (data) in separate processorcs.

A multiple instruction multiple data (MIMD) stream
computar has a plurality of different instructions stream,
each operating on its own data, we focus on this last type
in this thesis.

Por our purposes & plurality of procedures that are
cooperatively executed on a MIMD Transputer network is a
MIMD Transputer network procedure, a MIMD Transputer network
process i1s the execution of a MIMD Transputer network
procedure,

In a MIMD Transputer network, the process is clearly
a component of a MIMD Transputer network process which is
executed in one of the Transputers, where several
Transputers cooperate to solve a complex problem or operate
indepundently to sgolve different problems. We will be
concerned with the efficiency of running a simple process in
a MIMD Transputer network.

The programers may see a machine that is quite
different from the hardware machine, because the functions
available to him are augmented or modified by software,
microcode or hardware. For example, a MIMD machine may
appear to be a SIMD machine by means of the software that

implements the synchronization of the processors. When a new

machine "architecture" appears due to the use of software,




microcode or hardware to change the view of the machine, we
call this appearance of the hardware to the programers a
virtuel architecture. A virtual shared memory system can be
created by duplicating information in local memories, so
that when a producing process writes a new value into its
local menmory, the operating system then generates a message
to ali the consumsrs of the data. The local memories of each
Transputer in the network contain the duplicated data ready
to be consumed by each consumer in its local memory. In this
.way, we have the illusion of working with a Transputer
network which physically contains shared memory.

Another interesting concept is the communication,
scheduling and synchronization mechanisms between
cooperating processes to in a Transputer network. One aspect
of this is the granularity of the architecture. A fine
granularity architecture is one such that communication,
scheduling, or synchronization occurs within an instruction,
such as 1in the fetch-execute cycle of 4 Von Neumann
computer, (e.g., the Transputer OCCAM programming language
with its primitives processes send = | and recelve = ?). A
coarse granurality architecture implements <these operations
in terms of instructions as a whole., This definitlon belongs
to the architecture and must not be taken as the granularity
concept for the parallel programing. Granularity in parallel
programming is a commonly used measure of parallelism, and

is an indicator of how much computing each processor can do
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independently in relation to the time it must expend
exchanging information with other processors [HOMO87]. Then
a fine-grained procedure spends relatively more time
communicating than calculating, in relation to a coarse-
grained procedure. A second related aspect is the degree of
coupling. A loosely coupled system uses the approach to
communicate between simple processors, while a tightly
coupled system uses data transfers within the instruction
cycle to provide communications between them. Tightly
coupled system generally require that each simple process
has a fairly extensive knowledge about the other process,
while loosely coupled processes may know very little about
the other processes. (Knowledge is either an explicit copy
of the data that controls a process, or an implicit
mechanism such as compiling the procedures from a common
source program and running the process in "lock step").
Generally loosely coupled systems require handshaking as in
the case of the transputer networks and the tightly coupled
system depend on a common system clock to assure the correct
completion of a communication.

A third aspect of communication and synchronization
is the nature of paths between processors that implement
these operations. If cooperatinyg processes have direct wires
between them, as in the case of two Transputers connected
each other direct operation; If signals pass through other

processes, it 4is indirect (e,g., the case of a network of



Transputers in which for instance the first transputer of a
pipeline will send a message to update the data in the local
memory of the last tranputers of the pipe); and if signals
are handled by additional hardware, then it is switched. For
switched communication, scheduling, or synchronization, an
interconnection network is used. In this thesis we focus on

the indirect case.

B. TRANSPUTER OVERVIEW
1. The Transputer

The Transputer is a computer in a chip - a processor,
complete with storage and standard external interfaces. It
is a key technological development, because it enables
information systems to be designed at a higher level of
abstraction than was previously possible (this concept will

be discussed later).

Because of its importance, the word "Transputer" has

| been coined to describe the computer on a chip.

The Transputer focuses special interest on the transfer of
information across the chip boundary, rather than on the
processing of the information within that boundary. The
powerful concept provided by +the Transpute- 1links, 1s an
attractive characteristic which makes the Transputer very

suitable for building parallel networks [DASP78].
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2. Programming Languages

At present exist compilers for Transputers in PASCAL,
C, FORTRAN, and ADA (this last will be available for the
fourth quarter 1988) but these do not have the capability to
exploit the intrinsic parallelism of the Transputer chip and
also can not take advantage of the communication model used
by the Transputers. |

The OCCAM language "understands" parallelism and
communication at the very lowest level, allowing the
designer to describe énd control the use of parallelism in
the system. Other languages, regrettably, do not provide the
needed facilities; ADA, for example, does not, since its
semantics are those of multitasking system (i.e., comprising
cne or more processes which talk +to each other through a
shared memory), this implies. that a multi-processor ADA
system needs a shared global memory. Other languages have
equivalent assumptions; any language which provides
semaphores, for example, is assuming a shared address space.

OCCAM is a language designed to make the
reprasentation and control of parallel systems simple and
comprehensible. In addition, it provides most o©f the
facilities that a user of modern block-structured languages

like C or PASCAL would expect.




As an example of how the OCCAM language provides for
parallelism 4is that of <the transputer processor which
provides instruction set support for multitasking and
interprocess communication. The model used 1s that of OCCAM
in which the keywords PAR and ALT and the comuunications
operators ? and ! are implemented as instructions. This
makes the OCCAM parallelism very fast; a PAR costs cround 1
microsecond per component, while the execution time of a
matching ? and ! - including all the scheduling needed 1is
about twoc microseconds [INMOSJ88].

C. THESIS ORGANIZATION

The rest of the chapters of this thesis were organized
in the following fashion:

In Chapter II we describe the hardware used during the
development of the model, including the Transputer board
used to place the I/0 handler, which is internal to the PC.

Chapter III presents in a sequential and organized
fashion the ‘"growth* of the model irom one transputer
through sixteen Transputers, which is the final stage of
this design, focusing on model evolution, flow of data, and
expandability discussion.

In Chapter IV we approach the subject of efficiency
related to parallel networks and some key ldeas about Linear

speedup and linear and parallel performance.

10
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Chapter V is a comparative study of the efficiency of
the model among the different sizes of the transputer
network.

Chapter VI discusses the results obtained in the chapter
V, and gives some recommendations about what should be the
main goals of the AEGIS Modeling Group from a personal point

of view.

11



II. DESCRIPTION OF HARDWARE USED IN THE NETWORK

A. REALIZATION OF THE TRANSPUTER IMS T41l4

The IMS T414 was the transputer used in the design of
the Transputer network called Torus double transitive
closura, It will be depicted for hardwarc description as
well as to gain insight in the functional characteristic of
the Transputer chip in general. The 7414 integrates a 32-bit
microprocessor, four standard transputer communications
links, 2K bytes of on-chip RAM, a memory interface and
peripheral interfacing on a single chip, using a 1.5 micron
CMOS process. For convenience of description, the IMS T4l4
operation is split into the basic block, shown in the Figure
2.1 [INMOSDSS6).

Reset b
ARB)Y 8@ iy -

; Ereor < AN 3200
RootFromROM—1  Sysiem \2—{ Processor
°|°°Ng--h Services .
Ve
OND: Link LinkSpecial
CapPIus ] }d—- Link0OSpecial
c.;&.n.‘.‘.__ 4 ServiceS e Link1235pecial
) Link l— Linkin0
Timers Inenace g L inkOuto

Link fele Linkin1
INONACE e LiNKOULY

2k b{\u A N
Link [ LINkin2
intertace LinkQut2

o
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RAM 3
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nolMemso0-4 ‘ A e 32 interlace b= LinkOutd
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Figure 2.1 IMS T414 Block Diagram
12

e i m eme amer e e e e kb o 5 s Ul e ) S PR RD S EE P B M Mok B4 RSN PR SRS L A A Dt b N L A A AT LW A W A B B b B L A MLk AR A i vk gt




1. The Processor

The 32 bit-processor contains instruction processing
logic, instruction and work pointers, and an operand
register. It directly accesses the high-speed 2 Kbyte cn-
chip memory, which can store data or program. Where lauger
amounts of memory or programs in ROM are required, the
processor has access to 4 Gbytes of memory +ia the External
Memory Interface (EMI).

There are only six registers in the transputer, and
that is due to the availability of fast on-chip memory.
These registers are used 1in the execution of a sequential
process., The small number of registers, together with the
simplicity of the instruction set enables the processor to
have relatively simple (and fast) data paths and control
logic. The six registers are:

The workspace pointer which pecints to an area of
storage where local varlablas are kept.

The instruction pointer which point to the next
instruction to be executed.

The operand register which is used in the
formation of instruction operands.

The A, B and C registers which form an
evaluation stack.

13




The Figure 2.2 [INMOSD86], shows these registers,

]

Registers Locals Program

A

; B

c
Workspace - o =

Next inst ke st enennenun - .- >

Operand \

 ——.

Figure 2.2 Transputer Registers

The A, B and C registers are sources and destinations
for most arithmetic and logical operations. Loading a value
onto the stack pushes B into C, and A into B, before loading
A. Storing a value from A, pops B into A and { into B.

The instruction set has been designed for simple and
efficient compilation of high-level languages. All
ingtructions have the same format, designed to give a
compact repres~ntation of the operations occurring most
frequently in programs. Each instruction consists of a

single byte divided into two 4-bit fields.
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The four most significant bits of the byte are a
function code and the four least significant bits are the

data value, as shown in Figure 2.3 [INMCSD86).

Funcuon Data ]

7 4alo

Cperand Reg'star

o

Figure 2.3 Transputer Instruction Format

2. Procaesses and Concurrency

A process starts, performs a number of actions, and
then either stops without completing or terminates compléte.

A transputer can run several processes in parallel
(concurrently). Processes may be assigned either high or low
priority, and there may be any number of each.

The processor has a microcoded scheduler which
enables any number of concurrent processes to be executed

together, sharing the processor time. This removes the need

of a software kernel.
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At any time a concurrent process can be in one of the
following states:

Active -- Being executed
On a list waiting to be executed

Inactive -~

Ready to input
Ready to output
Waiting for a specified period of time

The scheduler operates ir such a way that inactive
processes do not consume any processor time. It allocates a
portion of the- processor's time to each processor. The
active processes waiting to be executed are held in two
linked lists of process workspaces, one for the low priority
processes and one for the high priority processes. Each
process runs until completion but is descheduled while
walting for communication from another process. In order for
several ' processes to operate in parallel, a'low priority
process is only allowed to run for a maximum of two time
slices (800 microseconds), before it is forcibly
descheduled.

The IMS T414 supports two levels of priority. The
priority 1 (low priority) processes are executed whenever
there are no active priority 0 (high priority) processes.
High priority processes are expected to execute for a short
time. If one or more high priority processes are able to
proceed, then one 1is selected and runs until it has to wait

for communication, a timer input, or until it completes

processing. If no process at high priority 1is able to




proceed, but one or more processes at low priority are able
to proceed, then one is selected.

Low priority processes are periodically timesliced to
provide an even distribution of processor time between
computaticnally intensive tasks [INMOSD86].

3. Communications

Communication between processes is achleved by means
of channels. The process communication 1is point to point,
unbuffered and synchronized. As a result, a channel needs no
process queue} no message queue and no message buffer.

A channel between two processes executing on the same
transputer is implemented by a single shared word in memory;
a channel Dbetween processes executing on different
Transputers 1s implemented by point to point links. The
processor provides a number of operations to support message
passing, the most important being input message and output
message. The input message and the output message use the
address of the channel to determine whether the channel is
internal or external. Thus the same instruction sequence can
be wused for both, allowing a process to be written and
compiled without knowledge of where its channels are
connected. The communications between two processes 1is
established as follows: The process which is first ready

must wait for the second one to be ready.
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To be precise, a message 1ls transmitted as a sequence
of single byte communications; each byte is transmitted as a
start bit followed by a one bit followed by the eight data
bits followed by a stop bit. After transmitting a data byrte
the sender waits until an acknowledge 1s received; this
consists of a start bit followed by a =zero bit. The
acknowledge signifies both <that a process was able to
raceive the data byte, and that the receiving 1link is able
to receive another byte.

4. Timers

The Transputer has two 32-bit timer clocks which
"tick" periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a
specific time. Also they are an excellent tool for
programmers to use to evaluate the performance of networks
and communication timing.

Two types of timers exist: one for high priority
processes and one for low priority processes. The high
priority timer is only accessible to high priority processes
and is incremented every microsecond, having a full period
of about 71 minutes. The low priority +timer is only
accessible to Jlow priority processes and 1s incremented

every 64 microseconds, and has a full period of about 76

hours.




5. Memory
The 2K bytes of static RAM provide a maximum data

rate of 80 MBytes/sec with access for both the processor and
links.

The Transputer can also access 4 Gbytes of external
memory space. Internal and external memory are part of the
same linear address space. Transputer memory 1s byte
addressed, with words aligned on four-byte boundaries. The
least significant byte of a word is the lowest addressed
byte.

The bits in a byte are numbered 0 to 7, with bit 0

the least significant. 1In general, wherever a value is

treated as a uumber of component values, the components are
numbered in order of increasing numerical significance, with
the least significant component numbered 0.

The internal memory starts at #80000000 and extends
to #800007FF. User memory begins a §800000048 and is

referred to as MemStart.

The reserved area 13 to implement 1link and event

channels. Figure 2.4 [INMOSD86]), on next page shows the 1

memory map of a T414.
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Pigure 2.4 Memory Map

6. External Memory interface and Events

The Extérnal Memory Interface allows access to a 32-
bit address space (4 Gbytes), supporting dynamic and static
RAM as well as ROM and EPROM. EMI timing can be configured
at Rengt to cater +to most memory types and speeds, and a
program is supplied with the Transputer Development System
to aid in thils configuration, There are 13 internal

configurations which can be selected by a single pin
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connection. If none are suitable, the user can configure the
interface to specific requirements.,

EventReq and  EventAck provide an asynchronous
handshake interface between an external wevent and an
internal process. When an external event takes EventReq
high, the external event channel (additional to the external
link channels) is made ready to communicate with a process.
When both the event channel and the process are ready, the
processor takes EventAck high and the process, 1f waiting,
ls scheduled. EventAck 1s removed after EventReq goes low.

Only one process may use the event channel at any
given time. If no process requires an event to occur,
EventAck will never be taken high.

7. Links

The T4l14 uses a DMA block transfer mechanism to
transfer messages between memory and another Transputer
product via the INMOS links. The 1link interfaces and the
processor all operate concurrently, allowilng processing to
continue while data 1s being transferred on all of the
links. The  four links are identical, bi-directional serial
and provide synchronization for communication between
processors and with the outside world. Each link comprises
an input channel and an output channel. A 1link between two
Transputers is implemented by connecting a link interface on

one transputer to a link interface in the other transputer.
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Every byte of data sent on a link is acknowledged on
the input of the same link, thus sach signal carries both
data and control information. Figure 2.5 shows the

Transputer links.

T l 800028H | linkalin !
fnk 1 800024H | tink2in
800020H | Hinktin ' .
R o S |
link 0 link 2 800016M link0In !
800012H linkdout E
fink 3 800008H | link2out i
R , i
800004H link10ut i
800000 lHinkOout ;
Transputers Links Memory Locations !

Figure 2.5 The Transputer Links

8. System Services

The System Services include all the necessary logic

to initialize and sustain operation of the Transputer. They

also include error handling and analysis facilities. They
are: Power, CapPlus, CapMinus, ClockIn, Reset, Boot, Peek

and Poke, Analyse, and Error.
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B. THE B004 IBM PC ADD-IN BOARD

The B004 Transputer board was used to accomplish the
function of hold the I/0 handler of the transputer network.
It is depicted in the following lines.

1. Initial Requirements for the PC Add-In Board

There are three main elements required ..o the 77
board, and those are:
a. A Transputer, with some external RAM
b. The interface to the Personal Computer

c. User controlled devices to allow the board to be
used to control other similar boards

Let's talk about the transputer and memory first. The
T41l4 Transputer is a 32-bit processor with a procesgsing
capability of 10 MIPS.

For the personal computer add-in board, it was
decided to give the user up to 2MBytes external RAM, mapped
into the internal RAM of the T4l4. For this amount of RAM on
an IBM form-factor board, dynamic RAM (DRAM) had to be used.
Also, a parity check system was implemented.

The communication with the host Personal Computer is
handled using the C002 Link Adaptor; this device converts
serial 1link data into byte-wide parallel data, and vice
versa. The C002 allows simple interfacing with standard bus
architectures, appearing to the host computer as a memory
mapped peripheral.

A number of system control signals are also provided

which give the user the possibility of connecting a number
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of Transputer boards to the add-in board via INMOSlinks,
allowing the add-in board to control a Transputer network.
All signals are software controclled. Figure 2.6 shows the

B004 block diagram [INMOSTN1L].
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Figure 2.6 Block Diagram of a B004

Because of the Transputer programmable memory
interface, we can configure the external memory cycle of the
transputer to be any width to suit slow and fast memory.

Also a number of strobes were supplied which can be
programmed to give refresh signals to DRAM (automatic
refresh over a selectable refresh cycle time can also be
chosen). This eliminates the need of timing generators.

The interface with the personal computer is ‘possible due to
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the communication between the PC parallel bus and the

Transputer via one of the Transputer serial links.
} . This method was chosen because it maps into the
Transputer concept of communications via OCCAM channels,
i.e., the host computer appears to be as a process at the
end of a channel mapped in%: —=re Transnuter link. However,
that also implies that the Transputer only "1se a channel to
communicate with the host computer.

To make this sort of interface possible, wers
developed devices which convert parallel data into serial
data, and vice versa to match with the channel protocol of
the Transputer links.

The aim of the system control functions is to
initialize, and analyse errors in an arbitrarily large
network of Transputers built with many boards. In particular
a B004 board must be able to control many other boards in a
rack such as in the EUROCARD BOX.

C. THE B003 BOARD

The IMS B003 evaluation board was the main unit used to
build the prototype of the lé6-transputer network developed
in this thesis.

It comprises four IMS T414 Transputers with 256 hbytes
of DRAM 1in each Transputers. The links provided with the

Foa &5 55 & m o as e S KPS S o s

evaluation board allow the Transputer network to be easily

extended by connecting with other boards.
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This board 1is capable of processing up to 40 MIPS. The
data rate of its links is weither 10 or 20 Mbits/ sec.

The fcur Transputers are connected in a ring as shown in

Figure 2.7,
|
I
| Hna @ link 0
' link 0 Jink 2 lan 3 tink 1
!
link 3 link 2
Ink 2 link 3 !
link 1 ink 3 lind 2 link 0 i
| [ "
| |
link 0 Iink 1

Figure 2.7 The B003 Board

There are two links per Transputer which can be 3
connected externally. Thus each B003 can be connected to

four neighbor evaluation boards.
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III. DESIGN AND EVOLUTION

A. THE MODELING PROCESS

1. Description of the Problem

The problem chosen was the heat flow problem in a two
dimensional plate and acw this problem could be solved using
globally distributed variacies in a transputer network.

This problem was selected because it is
representative of many similar types of problems that arise
in meteorology, science and engineering. :

The heat flow problem in a two dimensional plate is
governed by the partial differential equation:

o1 _¥1 1
It 53 ay2

with specified initial and boundary conditions.

To find the steady-state temperature distribution in
the square plate, one side is maintained at some temperature
which is called the hot end temperature, and the other three
sides are maintained at 0 degrees (iced bath) as shown in

Figure 3.1.
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Pigure 3.1 Heat Conduction in a Square Plate

| All internal points on the grid start also at 0
degrees. Also another element which 1is present in this

equation is the propagation rate W, which is equal to

At
(1~ 4r)/r where = —3

AXx
The method of solution is to iterate through all grid

points, calculating a better approximation to the

temperature at each point (1,j) in turn using the equation :

(T * W+ Tge) + Tiga) + T+ T p)

Tap= (d+w)
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As soon as a new value of T is calculated at a point,
its previous value is discarded. This is the Gauss-Seidel
method of iteration. To start a temperature of 0 degrees is
assumed everywhere within the plate. This process of
iteration is repeated tnrough all grid points until further
iteration would produces, very little change and eventually
N0 change in the computed temperatures, At this moment we
have reached the steady-state solution, and we can assert
that this is the moment at which the Jjteration converges,

by which we mean, if

lim T(i,j) tm4+ 1) = T(i,j)

tM weeme 0o

then our equation satisfies the discretized version of the
Laplace's eguation,

Our finite difference scheme involves five points,
four at time tm and one at the advance time tm + 1= *m + Dt,
that allows us to "march forward in time". In this numerical
scheme, the temperature at the next ¢time is the average of
the four neighboring mesh points at the present time,
adjusted by the propagation rate W (relaxation parameter)
which is a function of the thermal conductivity coefficient
of the material.
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2. The Abstract Model

OQur abstract model was defined without using a formal
specification approach. It can be seen as a black box in
which a function operates ruled by the partial differential
equation described above. The box provides the solutions to
the steady state distribution cf temperature ia a square
plate, with hot end temperature and propagation rate inputs,

as shown in Figure 3.2.

Partial differential equation

boundary

conditions Solution heat flow

Yellolh
ox~ oy problem in a two
dimensional plate

Figure 3.2 Abstract Model

3. The Transformed Computational Model

The Transformed Computational model represents the
adaptation of the mathematical model to the facilities
supported by the OCCAM programing languages in a modular
fashion. This model is shown in the Figure 3.3.
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Figure 3.3 The Transformed Computational Model

At the bottom of Figure 3.3 we observe the processes
executing. On the left side is located the I/0 Handler which
is in charge of supply to the Main Procedure with the
boundary conditions necessary for the correct operation
during each new iteration. On the right side is the Main
Procadure box which contains two basic blocks: The
Communication Block and The Calculations-Updating Block.
The Communication Block is in charge of the maintenance of
the interchange of messages with the I/0 Handler and

eventually with other neighbor Main Procedures.
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The Calculations-Updating Block has the functions of
calculating the new temperatures for time tm + 1 and also

updating the values in the mesh points.

B. NETWORK MODELS AND EVOLUTION
1. Network Classification

We can categorize our network prototype as a MIMD
Transputer network, because we have interactions among the n
Transputers which comprise the network, due to the fact that
all memories streams are derived from the same data space
virtually shared by all Transputers. Also this MIMD
transputer network is a loosely coupled cne, because of the
facilities created by the OCCAM programing language.

In particular the input and output messages which wuse the
address of a channel can determine whether an internal or
external channel, is being wused. Thus the very same
ingtruction allows a process to be written and compiled
without having knowledge of where its <channels ars
connected. That 1is a Transputer does not need to have
knowledge about its neighbors tc operate properly.

Our final stage will consist of a Transputer network of 16
Transputers connected and operating in parallel to solve the
proposed problem of the heat flow in a square plate.

The type of arrangement chosen was a Torus Double

Transitive Closure as can be seen on the Figure 3.8,




This type of network is also known as Regular Network
[CAWES0] and its main characteristic are the following:
a. The "tree" is a hierarchical structured variation with
any processor able to communicate with its superior and
its subordinate as well as its two neighbers,

b. If one of the Transguter fails we have redundant paths
for single connected failure.

c. The cost of this network is relatively high 1if we
considered its computational power.

d. The modularity and expandability is poor.

e. Performance 1s very high typically 3 to 5 MIPS, but
using the Transputer, we can have higher performance.

2. Model Evolution

Initially we made the set up for one Transputer , but
in order to compare the efficiency with a Transputer
network, the model was expanded to an array of 2 X 2 , an
array of 3 X 3 and the final stage was a 4 X 4 Transputer
network.

First let's see the different models which were
considered, why they were discarded, and why we chonose our
final prototype model. The Model I, was a system in which
the processes A, B, C, D, E, and F simulated the boundary
conditions and the numbered processes achieves the
calculations to solve the problem. This model was discarded
because for each line of Transputers, it had two Transputers
doing nothing but serving to convey the houndary conditions

and to extract the final solution of the problem.
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Also the communication vertically was very

inefficient. The Figure 3.4 depict the model.

r

' 116
‘ HANDLER

FPigure 3.4 Model I

The Model II has the processes A, B, C, and D as
senders/receivers of Dboundary conditions. The main
disadvantage of this model is that as we increase size of
the nstwork, wa will need more Transputers to handle the I/O
and boundary conditions passing, this model works well for
a small number of Transputers, assuming one is willing to
use four Transputers to  handle nothing but boundary

conditions. This model is shown in Figure 3.5.
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Flgure 3.5 Model II

Finally the model we selected, shown in Figure 3.6,
is one which handles the boundary conditions better. We use
one B003 for the one Transputer network, and make the other
three Transputers transparent. The 2 X 2 network wused all
four tranputers in the board. For the 3 X 3 network we used
four BO03 using the same idea as for one Transputer in one

B003 board, but now making transparent seven Transputers.
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Figure 3.6 Model III in Its Different Sizes

Is interesting to see how the flow of data is
achieved in this model. Figure 3.7 shows how the boundary
conditions and the start/stop signal are propagated through
the network, as well as the data path follow by the
solution, when it 1s sent back to the handler to be

displayed on the screen.
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In general this model was chosen because it provides
the larger Transputer device utilization without have
any idle or misemployed Transputers on the four and sixteen
Transputer networks, and also because its symmetry permits a
more even distribution of the communication load in the

network.
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Figure 3.7 Data Flow in the Network
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3. The

16 Transputer network prototype

with all

its connected

of the transputer networks

communicates to the I/0 handler. The

programs for

A, B, C, and D; the implementation of the modules

On Figure 3.8 we can observe the 16 transputer network

links, including these which

each one

are contained in the Appendixes

are those

the paragraph, Maximization of Software Performance.

i
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programs, and they will be discussed in the next chapter at

Figure 3.8
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4. Expandability of the Model

This transputer network can be expanded easily using
the series, (2 + n)~2 in which nis 0, 2, 4, 6, 8,.....
this alLows the construction of Transputer networks
utilizing all the Transputers available on the B003 boards
which is not the case if we get n= odd, then the Transputers
that are left over must be made transparent in order to run
the network. This practice however, makes the placement of
the channels a job tedious and error prone.

| Appendix E is contains an expandable placement of

Transputer channels following the above series for n even.
Thus we can easgily place with just change a number, networks
of 16, 36, 64, 100 ..... Transputers [INMOSTN13].
The way in which +the external 1links were connected,
including the links that joined the different B003 boards on
the EUROCARD box, is displayed on Figure 3.9 for 01 and 04
Transputer networks, and in Figure 3,10 for 09 and L6
Transputer networks.,

The connecting box(es) shows the connections between

the various B003 boards which make up the Transputer

network,




l'o link B0O4

ojulla
10 O

To set Up the extarnal links, just
match up the numbers using the

twisted cable, provided with the
reset line _E D

boards.
8004

"eonnectar at
RUROCARD Box

S

~ Figure 3.9 01 and 04 Transputer Networks Connectioens

(e 1O LINKE D704
TO LINKS 3004

ojugn] ningn mmmJ U0 H
ayrn W [ nTNE, bd [ [o]
(4 o ] ]
n A X ¥
B Bt (08

CONNECTOA A CONNBCTON 8 CONNECTOR O
PROET LN

—

Figure 3.10 09 and 16 Transputer Networks Connections
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IV. EFFICIENCY CONSIDERATIONS

A. INTRODUCTION
1. Generalities

Two related aspects of & parallel computer that
affect run-time efficiency are the speed of computation and
the speed of communication. The first relates to the design
of the processor, its instruction set, and its organization
(such as the use of a cache and pipelining) and its
realization (such as the speed of 1ts transistors). The
second relates to the interconnection network, the
scheduling of its rescurces and the routing of informatilon
through 1t. fThis second aspect is less understood, and is
the one in which different paradigms of parallel computers
differ most. We focus on theses two aspects, and propose that
our application be characterized by its communication
requirementy, Applications with similar communications
requirements can be grouped together. For instance a pattern
recognition edge-detection prbbleh can also be put in a
Transputer network mesh structure and our twe dimensional
heat problem also can be put in a t'ransputer network mesh
structure. These two mesh structure problems have radically
different computational requirements, but have the same
communication requirements. We can  study such network
topology from the point of view of how well it handles a
related class of Transputer network procedures.
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We agree that a large Transputer network can be built
to golve large problems, then we will submodel that problem
into two models; one model considers how a very large
Transputer network can be built, and how a MIMD Transputer
network process can be expanded within it, to determine
whether doubling the number of Transputers assigned to that
problem will speed up 1ts execution by a factor of two. We
might get linear speedup if that were true. (This ideal
situation is not easy to achieve, unfortunately). Those
results about 1linear speedup of Transputer network
procedures are very importaant since we need good procedures
for Transputer networks. The other model which is complement
of the first assumes that the problem size will remain fixed
and the machine will be larger and larger inductively. That
is, the problem may be run on one Transputer, and the
machine might be expanded from one to sixteen Transputers,
and we will consider the efficiency of running the problem
on the same one Transputer.

This model 1is easier +to study, since rather simple
and general statements can be made on it.

It is quite wuseful in understanding the overall
model, since expanding a Transputer network system to solve
a bigger problem can be done by fixing the problem and
expanding the machine first, then expanding the problem to
£11l the machine.
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,; In this thesis we will devote correspondingly more
time to studying the model which shows how a given
Transputer network process can be expanded within a large
K machine to determine if increasing the number of processors
A ‘ assigned, we can get linear speedup, also some reference and
Q; results related to how the fixed sized problem behaves when
" the Transputer network system in which it runs is expanded
“ inductively [LIMIS7].

. 2. Terminology and Concepts

We want a suitable set of definitions to evaluate the
a quality of our architecture. Because of thét, a notion of
f" "energy" 1s given besides the traditional concepts used in
oy engineering for the efficiency study.

i a. Power and Energy

'i; | The computational energy for a process is.the
product of the computational power (bit rate able to be
g, generated by the hardware of the Transputer) and the time
ln the hardware 1s needed, where the computational power
fé includes all the output necessary to run the processes and
Eé the time is the product of the length of the clock cycle or
in other words is the time required for computation and
4! communication.

N Te clarify those concepts let's see an example,
suppose we have a network with four Transputers like the
0 case of the networks that can be implemented using a IMS

5 - B003, then if each Transputer has a computational power of
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10 MIPS we can then assert that our network comprised of
four Transputers will have a computational power of 40 MIPS.
Therefore if we have a module running a process, we can use
N identical modules to execute the same process (as N
Transputers) but having available N times the computational
power of one moduls.

When we expand our Transputer network in an
inductive way, we call each Transputer that we add a unit of
computational power (UCPs).

In the evolution of our 16 Transputer network
prototype, we pass through the 3 X 3 network which is
assembled using 4 boards B003, then in this topology we £find
a special kind of Transputer which 1s transparent or a
neutral unit. It does not compute and only has the task of
moving data in and out of the network or 'simply doing
nothing as the Transputer located at the right-lower corner.
These modules cannot be classified as UCPs, so we call them
blocked UCPs, and these will be considered when we evaluate
the Transputer network in the next chapter. wWe also take
these into account when we measure the total amount of
computational energy necessary to run a Transputer network
process. The Time 1is also an interesting concept, and it
includes all the components of the time needed to execute a
Transputer network process. We will break the time in two
main blocks; the communication and the calculation time.

These two blocks are very well defined in our Transformed
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Computational Model from Chapter III and also they can be
seen on any of the programs from the Appendices.
b. Efficiency

The usefulness of a computer 1s indicated by the
efficiency it exhibits in the execution of processes on it.
This is the obvious definition for efficiency; now we will
define relative efficiency as well as the concept of
equivalent process necessary ¢to understand the relative
efficiency. Later a relation between relative efficiency and
input computational energies will be stated.
The relative efficiency of two computer systems executing
equivalent processes 1s defined as the ratio of the
efficiencies of the two systems in executing the process,
where two processes are equivalent if they provide the same
outputs when given the same inputs, (thch is clearly our
case in the network). Therefore we can define the efficiency
of a computer system in executing a process as the ratio of
input computational energy (ability to generate bits from
the modules) to the output computational energy (information
of theoretic bits produced by a module).

From this definition we can state that :
the relative efficiency of two computer systems executing
equivalent processes is inversely proportional to the ratio
of input computational energies of the two computers

[LIMIB8T7].
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3. Applications of Efficiency Analysis

So far the reader probably has some doubts about the
concept of efficiency and that it 1s critical for the
analysis that we present in the next chapter. Thus to bring
some light, let's use it to analyze some issues to show its
utility.

Pirst of all, we will consider the simple idea of
serlal-parallel conversion, which 1leads to the notion of
speedup. Before we do that we will classify the efficlency
analysis in two types; first order analysis which ignores
communication and control, focuses on computatlon, and the
second-order analysis which considers all these factors.
Then the analysis that we use to determine if a procedure is
capable of linear speedup, may be a first-order analysis and
to understand the real world wé will need to apply a second-
order analysis. 1In Figure 4.1 we can observe the classical
comparison between parallel and pipelined processors, this
is a simple notion which has been manipulated by thecorists

for many years.
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Figure 4.1 Energy for a Serial and Parallel Adaer

If we examine the relative efficienciles of a serial
and a parallel adder (Fig. 4.l1), in which the computational
powaer of the adder cell is much more greater than that of
the control and commurnication circuiltry that support the
adders (i.e., the calculations are more time consuming than
the communications), therefore we will ignore these factors
(first-order analysis). The energy for a 3 bit serial adder
and for a 3 bit parallel adder is shown in the Figure, in
the serial adder we have one unit of hardware used for three
units of times and in the parallel adder we have three units
of hardware being used for one unit of time, then clearly
the arsas are the same and so are the relative efficiencies.
This simple procedure shows the notion of linear speedup. If
the number of UCPs is multiplied by N then the time to
execute the procedure is reduced to 1/ Nth, or the speed is

increased by N.
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It should be noted that linear speedup is equivalent
to constant computational energy. This, type of analysis
will be wused extensively 1in the next chapter, when we
perform the comparative evaluation of the different
networks. The results are misleading in some architectures
because it does not consider the changes in computational
energy due to the communication and control. Nevertheless
the analysis carried out on the different prototypes was of
the type second-order, because the communication time was
include in the total time. |

From the notion of linear speedup and conversion of

serisl to parallel we can realize about the secondary
importance of the speed as figure of merit in a topology.
A parameterized architecture based on a single procedure as
addition 1is cépable of considerable speedup. For instance
12-bit add can be done one bit at a time in 12 time steps,
or 12 bits at a time in one time step. Within limits, it is
possible to squeeze the time dimension of an energy area as
the power dimension is increased to get constant area.

The degree to which parallelism can be exploited to
get speed depends on the amount of data to be processed.
However the 1limit to the speedup 15 given by the smallest
size of the unit of computational power (i.e., indivisible),
and this 1s the fundamental idea why the researchers are
interested in fine grain rather than large grain

parallelism.
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Ultimately we can not go further than a Turing
machine. Within these limits, time can be traded against
power. Thus the speedup is not a fundamental figure of merit
for a parallel architecture. The more fundamental figure of

merit in a parallel architecture is the efficiency.

B. MAXIMIZATION OF THE TRANSPUTER NETWORK

1, Generalities

This section will describe how to obtain better
performance from a Transputer network (array. type). However
only very general guidelines can be given, because this area
is still on active rovsearch and our solutions tend to be
specific to our problem.

2, Maximizing link performance

The Transputer link is an autonomous DMA engine
capable of s3ustaining a bi-directional data rate of 20
Mbits/sec. However in our prototype we are using 10 Mbit/sec
as the common data rate. The higher rates can be used
without seriously degrading the performance of the
processors. To achieve a maximum link throughput the system

links and the processor must be kept as busy as possible.
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Following are some suggestions for achieving the
maximum throughput:
a. Decoupling communication and computation
To avoid the links waiting for the processor or
vice versa, link communication should be decoupled from
computation. For example, it is inefficient to have <code
like the following :
SEQ
in ? data
compute(data)
out | data
because we are forcing the Transputer to perform one action
at a time, as inputting, computing, and outputting. The
solution is doing the three things at the same time using a
couple of buffers into a parallel construct:
PAR
buffer(in, a)
compute (a, b)
buffer (b, out)
b. Gather together all the communications processes
This can be seen in the communication blocks of
the diverse designed prototypes. The communication process
must also be wrapped into a PAR construct. If possible, is
also recommended to put this PAR package inside a PRI PAR
running first or at high priority, the communications

package.
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¢. Large link Transfers

Wwhen we set up a transfer down a link, the set up
itself takes about 1 microsecond. Once the transfer is
initiated, it will proceed autonomously from the processor,
consuming typically 4 processor cycles every 4 microseconds.
Thus the idea is to keep the message as long as possilble.
However, long data transfers also increase latency when data
must be transferred, which occurred in our case for the 16
Transputer network prototype. To solve the problem we used
the optimal message length in all the topologies developed,
including the final model of 16. Transputers, which used
between 10 and 100 bytes [SIHA88].

d. How the houndaries were passed in the network

The problem of the boundaries exchange was
approached in the following manner: The basic idea was to
send and receive by all the channels available, and if the
information (boundary) was not necessary, we just do not use
it. It may appear inefficient hut for purposes of creating
homogeneous processes, we favored this option. This gives a
uniform communications package, allowing a better measure of
the performance to be obtained. The boundaries were one
dimensional linear arrays with a maximum length of 24
integers (one Transputer network) and a minimum length of 6

integers.
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Figure 4.2 shows how this sequence of events happens.
Once the communications are achieved the different
boundaries are stored in linear arrays called dummies, then

the processes decide whether to use them or not.

Dummy arrays '

‘I to which the ‘

boundary conditiona
' arrives . before

they are used or

discarded
. v
i
> >
boundary array| of !
out - emieratures F— !
|
i
boundary
in

Figure 4.2 Boundary Exchange
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C. MODULARITY OF THE SYSTEM

The modularity of this type of system is poor [CAWESO].
The main issues that conspire again the modularity of each
of the procedures were the routing code for the start/stop
signal and the routing code to extract the final information
from the network, Even considering this little diffarence in
the implementation of each module, we still preczerve the
data structures for the Communication and Caiculation Block
identical. We call these two blocks the main data structure,
which allows us to see the Transputer network ag a system
with virtual shared memory by duplicating the information in
each main data structure which is in turn a bleck of memory
on esach Transputer.

The routing codes are different, however because most
of the Transputers in the network have to perform a
different job to assure the transmission of the start/stop
signal and to flush the results out of the network.
For instance Transputer number 0 which is at the upper left
corner, has to receive and send to the I/0 Handler 15 arrays
of temperatures plus 1its own array, 1in contrast to
Transputer number 3 which 1is at the lower left corner, and
which only has to send up its own array the moment after the

reception of the stop signal.
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V. COMPARISON OF NETWORK PERFORMANCE

The main reason to bulld parallel computers is to be
able to solve larger problems or to solve the problem
faster.

This chapter focuses on the central theme of this
thesiaz. We have described so far a parallel computer
(Transputer network) prototype which has been implemented in
an inductive fashion. Briefly, an inductive architecture is
one that c¢an exscute & number of jobs proportional to the
number of processors, and the energy needed for each job is
proportional to a sublinear function of the total number of
processors. Thus a relatively large process, a&s the one used
in this thesis (heat flow problem) whose procedure exhibits
linear or nearly linear speedup, can run efficiently on the
whole network if it has an inductive architecturs.

It is also convenient to c¢omment that the experimental
results obtained from the different Transputer networks were
conducted wusing off-chip memory data. This provides the
worst case evaluation and all the results are under the same
general conditions.

A. ARE WE USING AN INDUCTIVE ARCHITECTURE ?

After the above lines and before get into the efficiency
subject, we think it is good to verify this point.
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A computer architecture is inductive if:

There is a basis architecture, and all architectures
use only the components that are units of the basis.
For wus that is certainly true, since the basis
architecture is represented by only one Transputer, and
the other architectures contain nothing but the same
UCP, which is the Transputer.

There is an induction mechanism that can expand an
architecture from N UCPs to I+l UCPs. That also can be
seen in Figure 5.1, in which we see the basis
architecture on the left and the expanded architecture
on the right for a simple N by N mesh. The induction
mechanism simply adds Trangputers around the perimeter
of the mesh to increase the number of UCPs from N~2 to
(N+ 1)~2.

e e

[v] il
01 TRANSPUTER 04 TRANBPUTERS

] ] ] [

0% TRANSPUTERS 18 TRANSPUTERS

Figure 5.1 The Inductive Mesh Architecture

Therefore we can assert that our expanded model is an

inductive architectura.
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B. EFFICIENCY EVALUATION

In general the efficlency can be increased by using a
better procedure, a faster technology or processor. In this
thesis, using the inductive property of our architecture, we
will not change the technology, procedurs or processor, but
we will use a variahle number of identical processors
(Transputers). What we have done in this evolution, or
better, induction of the basis model is to fix the size of
the problem. That is, we ars solving an array of 24 by 24
elements and executing it on more UCPs or Transputers; our
goal is to show how this Transputer network process runs,
without seriously decreasing in efficiency. Then from our
exparimental results we can see in Figure £.2 a picture,
which is pretty much the same as the one used to describe
the linear speedup concept in Chapter 1IV; the sizes of the
UCPs differ a bit from the original bagis, but this is due
to the fact that we are using a second-order analysis in
which the communication and control overhead is considered,
and of course larger than for only one processor running the
same process. In this Figure on the left, the area of the
rectangle is the energy to execute the process i1in one
Transputer, and on the right and the bottom we can observe

the same for the other inductive architectures.
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In Table 5.1 we have a summary of the results.

We can ohserve that the computational power of each network

is incremented as expected by factor of

TABLE 5.1
PROTOTYPE ENERGY RESULTS

4, 9, and 16 in

relation to the value of the network of one Transputer.

time
30.82
05.74
02.33
01.08

secC

sec

secC

secC

computational power
310,519 bit/sec
1,400,102 bit/sec
2,829,484 bit/sec
4,943,449 bit/sec

# of Transputers
01
04
09
16
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Figure 5.2 Efficiency Comparison

The values for four and nlne Transputers are, as
explained before, a 1little bit above the expected because
the communication and control overhead, but in the 16
Transputer architecture we see that now the computational
power to run the process is a little bit less than the
theoretical calculated value, which will be 4968304 bit/sec
(310519 x 16).
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The reason for that is referred to Chapter IV, on the
paragraph "the applications of efficiency analysis", in this
case our architecture is entering in the fine granularity
zone so the degree at which the parallelism i1s being
exploited 1s superior to the two former cases; also we can
say that for our inductive model, the atomic size of the UCP
is for an array of 6 X 6 Transputers, in which the array
of temperatures we are deal with is only a 4 X 4 elements.
Beyond this point we cannot continue diminishing the size
because the Transputer process simply does not work.

From Chapter IV we remember the definition of
efficliency; it was the ratio of input computational energy
to output computational energy; and also we should realize
that the efficiency factor 1is very luv because we have the
output information of the process divided by the information
delivered by the hardware modules in the time necessary to
solve the problem (i.e., time to steady state in our case).
In Table 5.2 we can see how the efficiency is improved in
relation to the network basis of one Transputer. For this
calculation we recall that the input computational energy of
the system is equal to the Time times the computational
power, and the output computational energy is equal to the
maximum data rate for the Transputer which is 1024 x 10+5

bits/sec [INMOSO86], times the Time.
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TABLE 5.2
EFFICIENCY COMPARISON FOR THE NETWORKS

.
in.cp.energy out.cp.energy effi, ratio # Transp. |
3155968000 9570195.58 0.0030 01l
587776000 8036585.48 0.0137 04
238592000 6592697.72 0.0276 09
110592000 5345404.92 0.0483 16

As can be expected as long as we are entering on the
fine granularity 2zone, the efficlency of the system is

improved.

C. RELATIVE EFFICIENCY

Another mcasure that we performed 1is the relative
efficiency of runaning our Transputer network procedure in
the different systems.

From the definition we know that the relative efficiency
of two computer systems is the ratio of the efficiencies of
the two systems executing the same process. This results are
resume in the Table 5.3, on which we take the higher

efficiancy as base to compare the others again it.
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TABLE 5.3
RELATIVE EFFICIENCY

basis efficiency = 0.0483

relative efficiency for 01 Transp. network =« 6.21 %

relative efficiency for 04 Transp. network « 28,36 %

relative efficiency for 09 Transp. network = 57.14 %

]

On this Table we can realize Qhat the efficienéy of the
one Transputer network, is about 6.21% the efficienéy of the
sixteen Transputers network, and so on for the others
networks.

The relative efficiency is plot in Figure 5.3. We
observe a plot of the efficiencies, related to the highest

efficiency presented by the sixteen Transputers network.
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Figure 5.3 Relative Efficiency
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D. TRADITIONAL APPROACH TO SPEEDUP ESTIMATION

The speedup that our system is capable of achieving can
be graphically determined using the traditional method which
is outlined now. We know from before that if we have a
parallel computer with N equivalent processors running in
parallel on a problem, it will be N times faster than a
single processor running the same process. Certainly this is
the ideal case, but in the reality the speedup of a system
ranges from a lower-bound of 1g(N) to an upper-bound of
N/ln(N) [XAFA84]. The lower bouné is known as‘Minsky's
conjecture. Using this conjecture, we can only‘expect a
speedup of 2 to 4 from our four and sixteen Transputers
networks. In the other case we have a better estimate of N/
ln(N). For the latter case let's get through the estimation
and subsequently plotting process. We can say that the
process at the one Transputer network 1s running in & unit
of time, Tl= 1. Let Fi be the probability of assigning the
same problem to i processors working equally with an average
load di=1/1 per processor. Furthermore assume equal
probability of each operating mode using i processors,
that is Fi= 1/N, for N operating modes : i= 1, 2,..., N,
Then the average time required to solve the problem on an N-
processor system is given below, where the summation

represents N operating modes.
. 3
To= Zfl"'d‘-‘“

lw]

Xj—

X
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The average speedup S is obtained as the ratio of Ti= 1

to Tn; that is S=T1/Tn

[KAFA84].

Then in the Figure 5.4

we observe the plot of these upper and lower bound plus the

ideal case and also we can see our result.
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Figure 5.4 Various Estimates of Speedup and our
Results

In this plot we can observe,

fine granularity zone,

communications overhead

exploiting the parallelism in a more

and

due to

obtaining a better speedup.
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E. SOME DETAILS

There are some conditions about this evaluation and some
observations that are necessary to explain and which can
serve as hints for future investigation.

First, during the evaluation of the different networks,
there were automatic ways of setting up to evaluate. That
is the processes were loaded on the Transputer network and
when they were ready with the dJata, they stopped the
processes themselves and displayed the information on the
screen. Although this look 1like a fairly good way to save
time, in our particular case, the method was discarded
because it introduces an overhead in communications which
would biaz the accuracy of the measurements.

Second, the programs were implemented wusing the Type
INTEGER for all the arithmetic operations. It allows a
program to run faster and also the comparison time to
astablizh the ‘"steady state" condition was less than if we
had used the Type Floating Point, which from the comparison
resulted much more time consuming than the Integer Type, as
expected from the OCCAM prog:ramming Language specifications.

Third, once the programs were implemented, there were
other paths of investigation, such as the one in which the
problem size was augmented to run on a 4 X 4 Transputer
network, giving an overall array of 96 by 96 elements. In
this case the results showed an improvement; i.e., an

increasing irn throughput was observad.
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The reason is simpler but not subtle; in this case the
improvement of the performance was due to the fact that the
number of computatlon per unit of time was increasing by a
square factor, while the overhead in communications grew in
a linear fashion, therefore we were again diminishing the
size of the grain. This point will be discussed later in
this chapter.

F., COMPARATIVE THROUGHPUT

The throughput is another type of performaﬁce measure
that can be rocorded. The <throughput in our system
represents the number of results per unit of time that our

system can achieve. Table 5.4 gives us a summary of the

results.
TABLE 5.4
THROUGHPUT RESULTS
array size # transp. throughput
24 x 24 0l 40511 results/sec
12 x 12 04 206580 results/séc
8 x8 09 392535 results/sec
6 %X 6 16 671824 results/sec

Also we can do a relative comparison between the

efficiencies as we did before with the efficiencies
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determined from the computational energy of the system, and
certainly, as can be expected, these values are nmuch the
same. The summary of this information is recorded on Table
5.5,
TABLE 5.5
THROUGHPUT AND RELATIVE THROUGHPUT

array size # transp. rel. throughput
24 X 24 01 6§.30 %
12 x 12 04 30.75 %
8 x 8 09 58.43 %

6 X 6 16 ———— KK

(*¥) the overall array size is the same

(**) basis throughput

G. THE OPTIMAL ZONE

wWe know that the idea of reducing the granularity in a
parallel architecture 1is the main focus of the research
today, but conversely there 1is a practical .limit on how
little computational power can be used to execute a process
related to the cost of the hardware and the threshold time
to execute the process. 1In other words, it appears to be
ideal to break up the problem into smallest possible
components for parallel execution, but  that fine

partitioning can in practice be too costly in terms of
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overhead and cost of the hardware. For instance, we will be
underusing a powerful microprocessor as the Transputer, to
solve a very little problem product of this partition, and
also when we partitioning a problem very finely, we get more
time consumed to communicate data between Transputers, thus
slowing down the production of results, and not gaining any
improvement in performance. Therefore we have to find a way
to balance the communication and computation in a effective
manner. To that end, the answer is to get a more relatively
coarse partitioning, 1.e., get a tradeoff between the
maximum number of processors that can be feasibly employed
to solve the problem and the time constrains of the problem
itself. The idea 1is to find what we have called the "optimal
zone", and operate our machine in it in order to have
maximum performance and consequently the best efficiency.

In our sixteen Transputer network prototype, we have e
system comprised by many small 1internal fast memory
processing elements or Transputers, that communicate each
other relatively fast through the splendid Transputers
links, thus this architecture 1lends itself to fine grained
problems. These  expectations were confirmed from our
experimental results. Another way to approach the problem is
to fix the number of processors and reduce the granularity
by wusing a larger array. We use this method in the four

network prototype and the sixteen network prototype.
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We decreased the granularity using software, 1i.e., we
increased the size of the array of temperatures and we
observed and recorded the behavior in relation to
throughput.

The testing that was performed on these two
architectures was to run the programs, changing granularity
starting with a very coarse grain, l.e., we use a
temperature array of 4 elements and we incremented its size
up to 24 elements, and we were recording and calculating the
different throughputs for each different problem size. Thus
we could observe the throughput start to increase
continuously from the minimum size, and then stabilize at
an array size of 14 x 14 elements, for an array of 96
elements (not shown), this behavior still holds. It is true
the throughput increased greatly, but on the other hand, the
time to solve the problem also increased. Here we have to
tie our performance to timing constrains. From this we can
deduce the existence of the optimal =zone for this type of
architecture. To 1llustrate these concepts we can see in
Table 5.6 the results of throughput for different array

sizes on both architectures, and in Figure 5.5 we can gee a

plot of these results.




TABLE 5.6

THROUGHPUT RESULTS FOR DIFFERENT GRAIN SIZE

array
grain size
size elements
extrem.large 04
very large 06
large 08
medium 12
transition 14
fine 16
fine 18
very fine 24

04 Transp.

throughput in
results / sec

62500
111111
118421
135869
145161
133315
140350
144047

16 Transp.

250000
444432
473680
§43472
580640
532608
561392
576176

throughput in
results / sec

A

throughput in bits per second
1000000

950000
900000
850000 =

800000 «|  Maximun troughput

me:
700000 =
650000 =
600000 7
550000 =
500000 +
450000 <
400000 =
350000 =
300000
250000
200000 =
150000

0 ——

100000 -:ﬂ 04 ¢t
SOCKX)-.: ﬂ/ ranip, network

1¢ transp. network

0 4

T
12

16

Arraysize

20 24 8

Figure 5.5 Throughput for Different Grain Size
in a 04 and a 16 Transputer Network
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H., HOW THE PARALLELISM WAS ACCOMPLISHED

‘SO far, we discussed throughput and speedup of the
different Transputer networks and we have proved from the
experimental results the existence of parallel activity.
Mow let's consider the parallelism in more detail to have a
clear idea of what 1s going on.

We must recall that we have a Transputer network process
running making use of the virtual shared memory system. This
virtual shared memory is obtained by duplicating information
in local memories so that when a producing process writes a
new value into its 1local memory, the synchronous operating
system generates a message which 1s broadcast to all
consumers of the data via the point to point link mechanism
of the Transputers. Thus the local memory of each computing
node (Transputer in the network) contains the duplicate dats
ready to be consumed by each consumer in its local memory,
[KOL88]. The reading and writing 4is accomplished in every
complete cycle of communication and c¢alculation, and is
executed in a carefully synchronized fashion so that the
writing of the data structure by a producer 1s completed
before that data structure is read by the consumer [REKA79].
In our heat flow problem this sequence of events occurs in
the following way: suppose we map an imaginary grild over the
plate denoting at each line intersection a Transputer which
is in charge of calculating a square segment of temperatures

for the plate.




As soon as some process 1s ready with the updating of
its set of temperatures due to a previous boundary exchange
with 1its neighbors, it proceeds to calculate the new
temperatures, updating its internal array of temperatures
(updating 4its local memory, represented by the data
structure which contains the array of temperatures). It is
then ready for a new cycle, which always starts with the
boundaries exchange (write in and read from the local memeory
of 1ts neighbors). This last action cannot be seen as a
local activity which only affects the state of the neighbors
of this process but as a kind of chain reaction which 1s
propagated in vertical and horizontal sense all over the
network, creating <the so called virtual shared memory
effect. We can observe that assertion in Figure 5.6 on next

page.
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For simplicity only a row of the network is dlsplayed, but this transfer
of boundsries, whieh In turn represant the update mechanism, must be
obesrved as a aimultansous process in both directions, (up-~<down and
rightee  lott). !

Figure 5.6  Memory Updating Mechanism in the Network

Let's describe what we mean with chain reaction in a
more preclse way: suppose at some instent of time the
process 0 recelves and sends (writes in i.s local memory and
writes out the surrounding local memories) the boundaries
from/to its neighbors. The following processor (or immediate
neighbor on bottom or right) let's call and locate 1t to the
right, process 0l which does exactly the same to 1its right
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and the next process receive and send these boundaries
behaving in the same way until we arrive at the end of the
row, which we call the end for the sake of the illustration
of the concept. In reality if we look 1in more detail, we
shall agree that this end of the row does not exist, because
the 1last Transputer 1s physically connected to the first
Transputer in a closed loop. Moreover, this movement of data
to the right is also registered in the opposite sense
concurrently (from these notions were established the name
of "double transitive closure"). Thus we can assert that at
any instant of time each Transputer in the network updates
or writes into the local memories of the other Transputers
in the network due to a kind of interactive total exchange
of boundaries. 1In other words, when Transputer 0 receives
fhe boundaries from Transputer 01 at its right, it is
receiving not only the effect of the boundary temperatures
of this Transputer but also the effect of boundary
temperatures in Transputer 02, and Transputer 03, and so
forth 4in a concurrent fashion, yilelding a kind of

instantaneous daisy chain transmission.
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We can assert that the time 1in which memory was last
updated in process 0 due to the data produced in process 3
at the end of the row is the very same as the time for
updating of memory in process 3 due to the data produced by
process 0. In the timing diagram of Figure 5.7 is shown the
concurrent activity of the sixteen Transputer network
prototype, using for the sake of simplicity only a row of
the array. It must be remembered that the activity occurs
concurrently in a vertical and horizontal sense, in right to
left And top to bottom directions, and vice versa.

The symbol C stands for calculations and the symbol D
for updated data value. During the first complete cycle,
process 0 updates its data value, recelving information via
link2 from process 01 and process 01 at the same time
recelves this information for i1ts own consumption from
Transputer 0 via link3. This activity is performed
concurrently. At the same time, process 01 does the same for
process 02, and process 02 for process 03. After that, we
observe a parallel calculation activity in the fourth
process, which will last, at a maximum, the time which
takes the last process to achieve its calculations. This
does not means that the next iteration will be delayed by
any  processor calculation other than the process 0
calculation, which is in charge to start the cycle.
Therefore the calculation activity of the slower process may

overlap in time with the updating data time of the other
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processes for the next updating cycle, and the other way
around. That is, the updating activity of a process may
overlap with the calculating activity of the other process,
but the bottom line for this overlapping is that it is not
possible to perform an updating activity which belongs to a

determined cycle with the calculations data of the same

cycle.
Proc. 0 ke DO co D1 C1 > D2 Ca2, >,
Proc. 1 DO Co D1 C1 DZN c2 >
2
Proc. 2 [—rara2 pall po D2 ¢ 2
Proc. 3 DO . Cco D1 C1 D2 - C.’E>
Time -
The Parallalism is easily obserxved by the overlapping in time
of the update and computational periods of the diffcreat
processes.

Figure 5.7 Timing Diagram
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I. THE TIMING CONSTRUCT

To finish, we wish to describe the timing construct used
to obtain the measurements.

The T4l4 Transputer has two timers; a high priority
timer with a resolution of one microsecond and a cycle time
of about 71 minutes, and a low priority <timer which has a
resolution of 64 X 10~ -6 seconds and a cycle time of 37
hours. The timer used was the low priority timer, and the
type of construct was an elapsed time construct to determine
the elapsed time from start to finish of some activities
within the process. The basic structure of this construct

can be seen in Figure 5.8,

«++. Declaration of variables
Timer clock:
INT tinmel,time2,timetest:
SEQ
clock ? timel
¢eso timing code
clock ? time2
+vsess More code
timetest := time2 -~ timel (final result)

Figure 5.8 The Timing Construct

Essentially the timing construct has two variables of
integer type, (time2, timel) which are used to store the
value of the Timer and a third integer variable called
timetest which give us the difference , which is the value

of interest.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The conclusions that we obtain from our observations
during this research were as follow:

First, the effects of parallelism in the networks were
proved practically and theoterically.

Second, the existence of an optimal zone related to the
granularity'of the system and time constrains of the problem
was predicted 1in theory and deduced from the experimental
results.

Third, the degree of parallelism attained in these
networks is quite remarkable, as shown in the Pigures due to
speedup and efficiency. For example, in the 16 Transputer
network prototype we obtain for a 6 by 6 array of
temperatures a throughput of 671824 results per second.
Considering the fact that we perform 7 arithmetic operations
per result, (5 additions, one division and one
multiplication), that gives us 4,702,768 integer operations
per second. Also should be taken under consideration that
because the fact of the implementation "march forward in
time", was necessary to copy the entire array of
temperatures into a temporary array which 1is later
transferred to the real array of temperatures, thus that
represents an overhead which slows down the process

significantly.
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Pourth, the improvement in performance is a trade off
between the number of processors (Transputer) added to the
network and the granularity on one hand, and on the other
hand, the cost of the hardware and the time constrains of
the problem.

Fifth The Transputer network 1s an architecture
comprised of many small internal fast memory processing
elements that communicate to sach cther through the powerful
Transputer links. Thus this architecture 1lends itself to

fine grained problems.

B. POSSIBILITIES OF THE TRANSPUTER

At the beginning of +this thesis some guidelines about
the importance of.the Transputer were given.

The real importance of the Transputer lies in the fact
that i1t represents a new level of abstraction in the
physical design of information systems. As we know so far,
there have been two levels of abstraction:

1) the electronic component, in which the information is
represented in terms of electrical signals, like voltage or
capacitance, and

2) the logical gate, in which the information 1is
represented by logical levels, so the electrical details
have been abstracted from the desi n process.

The Transputer offers a third level of abstraction,
based on language, where the basis wunit is the word, which
can be given specific semantic connotations by the provision
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of an appropriate set of information opefations. Therefore
the Transputer chip will be used as time goes on in much the
same way as the discrete transistor was used about 20 years

ago.

C. RECOMMENDATIONS

Bear in mind that the fundamental research reason of the
AEGIS modeling group at the NPS, 1s to develop a suitable
replacement the older architectures on board the Ticonderoga
class ships. It 1s recommended that rather than broadening
the Transputer Laboratory to cope with this function, the
research should be divided into specific smaller projects
which help to implement the new system. This recommendation
is basically due tc the limited availability of resource for
a small group like this.

Another recommendation is to seek for feasible research
projects related to weapons that can be developed by the
Group.

It 1s also important to continue the trend of this
thesis in following the exploration of this type of
architecture and the production of software for it.

It will be interesting to see how this type of
architecture can handle problems as weather forecasting for
a particular weather model. Pinally is important to continue
research in the field of graphic applications, especially
that which pertains to the study of Chactic Systems such as
Mandelbrot and Julia sets,
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APPENDIX A
0l TRANSPUTER NETWORK SOURCE CODE

> S A e U G T e e S M e G S M Y NS G G WD A WED WS SN L W SIS DY VES GG GmR N RUS M A S Gl b MR NGNS Gue G GR¢ GOV S A WA GrY ML GES CUN ME WU wp OV W Em

- G S o e M G B B O W e e T A e G M A H A6 iy BAS G EEG W N W S LS DY N RS EDG G RN M U e Gy D e SRS G G G N AP A e e dnt

#USE "c:\tdsiolib\userlo.tsr":
VAL linkOout IS O:
VAL linklout IS
VAL link2out IS
VAL link3out IS
VAL linkOin Is
VAL linklin IS
VAL link2in IS 6:
VAL link3in IS 7:
CHAN OF ANY leftin,rightout,antirightout,ant leftin:
PLACE leftin AT link3in:
PLACE rightout AT link3out:
PLACE antirightout AT link2out:
PLACE antileftin AT link2in:
BOOL turning:
VAL § IS 1ll:
VAL esc IS 223:
VAL g IS 333:
VAL size IS 24:
INT w,tag,he,no,z,txt:
[size] INT temp:
(slze] INT recp:
[size] INT recpl:
[size] INT recp2:
[size] [size] INT trulyoO:
SEQ
no:=0
write.full.string (screen, " Enter the hot end
temperature ")
read.echo.int (keyboard,screen, he, o)
newline(screen)
no:=0
write.full.string (screen, " Vnter .he propagation
rate ")
read.echo.int (keyboard,screen,w,no)
newline(screen)
SEQ
SEQ r = 0 FOR size
SEQ
temp (r] := 0
recp [r] := 0
recpl (r] := 0
recp2 [r] t= 0

b
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SEQ r = 0 FOR size
temp [r] := he
tag:= g
antirightout ! tag;w;temp
rightout ! tag;w;temp
antirightout ! recp2
rightout ! recpl
turning := TRUE
SEQ
WHILE turning
PRI ALT
keyboard ? z
SEQ
JIF
Z = @sc
SEQ
tag:= s
antileftin ? recp
leftin ? recp
antirightout ! tag;w;temp
rightout ! tag;w;temp
antileftin ? trulyo
SEQ r = 0 FOR size
SEQ
SEQ ¢ = 0 FOR size
SEQ
txt:= trulyo [r] [c]
write.int (screen,txt,4)
newline(screen)
turning := FALSE
newline(screen)
TRUE
SKIP
antileftin ? recpl
SEQ
leftin ? recp2
antirightout ! tag;w;temp
rightout | tag;w;temp
antirightout ! recp2
rightout ! recpl
newl ine (screen)
write.full.string(screen, "Type ANY to return to TDS")
INT aay:
read.char (keyboard, any)
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VAL linkoOout IS
VAL linklout IS
VAL link2out IS
VAL link3cut IS
VAL linkOin Is
VAL linklin IS
VAL link2in IS
VAL link3in IS
[9] CHAN OF ANY channel antichannel:

28 ee oo o3 oo oo

\IO\O'IAUNI-'O

PROC central.node(VAL INT engine,CHAN OF ANY
leftin, topin,rightin,bottomin,
leftout,topout, rightout,bottomout)
#USE "c:\tdsiolib\userilo.tsr":
BOOL active : ~-Declarations
VAL 8 IS 1l1:
VAL g IS 333:
VAL size IS 24:
INT tag,w,tp,n:
[size] [size] INT square:
[size] [size] INT calcul:
[size] INT dummyoO:
[size] INT dummyl:
[size] INT sender0:
(size] INT senderl:
(size] INT sender2:
[size] INT sender3:
WHILE TRUE
SEQ ~- Array initialization
SEQ r« 0 FOR size
SEQ c= 0 FOR size
SEQ
square [r] [c] := O
calcul [r] [¢] := O
SEQ r« 0 FOR size
SEQ
dummyQ [r] =
dummyl [r] :-

sender0 [r]

senderl [r]

sender2 [r]

sender3 [r]
active:= TRUE
n:= engine

0
0
0
0




WHILE active
SEQ
IF
nN= 0
. SEQ
topin ? tag;w;dummyl
rightout ! tag

active:= FALSE
topout ! square
TRUE -- Communication block
SEQ
PAR
leftin ? dummy0
topin ? dummy0
rightin ?  dummyo
bottomin ? dummyo
leftout ! sendear0
topout | senderl
rightout | sender2
bottomout ! sender3
SEQ ¥ = 0 FOR size
SEQ
square{r] [0] := dummyl [r]
SEQ r = 1 FOR size - 2
= SEQ ¢ = 1 FOR size ~ 2
SEQ R
tp:= ((w * square [r] [c] ) +
. ( square [r] [c-1] +( square
[r] [c + 1] square([r-l][c]
+ square (r + 1] (¢]
Y)Y /(4 + W)
calcul [r] [c] := tp
SEQ r = 0 FOR size
calcul (r] [0]:= square[r] (O]
square := calcul
SEQ r = 0 FOR size
SEQ
sender0 [r]:= square(r] [1l)]
senderl [r]:= square[l! [r]
sender2 [r]:= square([r; [size -
2]
sender3 [r)]:=square(size - 2] [r]
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PROC transp.horizontal (VAL INT engine, CHAN OF ANY
leftin,topin,rightin,bottomin,letftout,
topout,rightout,bottomout)

e e S — S 00 S W AR M G TS W M W ST GES TS NG W WU M A S SR s W BN G W S e T SR SN R NI G R S e L G R A R

#USE "c:\tdsiolib\userio.tsr":
BOOL active:

VAL s IS 11l:

VAL g IS 333:

VAL size IS 24:

INT tag,w,n:

[size] INT specl:

[slze] INT spec2:

WHILE TRUE
SEQ
SEQ r = 0 FOR size
SEQ
specl (r] := 0
spec2 [r] := 0
n:= engine
active:= TRUE
tag:= ¢
WHILE active
SEQ
IF
n= 2
SEQ
leftin ? tag
IF
tag= s
active:= TALSE
TRUE
SEQ
leftin ? specl
rightin? spec2
leftout | spec2
rightout ! specl
nm 3
SEQ
leftin ? tag
IF
tag = s
active:s FALSE
TRUR
SKIP
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PROC transp.vertical (VAL INT engine, CHAN OF ANY

leftin,topin,rightin, bottomin,
leftout,topout,rightout,
bottomout)

#USE "c:\tdsiolib\userio.tsr":
BOOL active:

-~ Vuriable declaration
VAL s IS 1ll:
VAL g IS 333:
VAL size IS 24:
INT tag,w,n:
[size] INT specl:
[size] INT spec2:
WHILE TRUE
SEQ
SEQ r = 0 FOR size
SEQ
specl [r] := 0
spec2 [r] := 0
n:= engine
active:= TRUE
tag:= g
WHILE active
SEQ
IF
nN= 1
SEQ
bottomin ? tag;w;specl
rightout ! tag
IF
tag= s
active:= FALSE
TRUE
SEQ
bottomin ? specl
topout ! specl
topin ? spec2
bottomout ! spec2
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PLACED PAR

PROCESSOR 0 T4

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

channel({0] AT linkOin:
channel(l] AT linklin:
channel[2] AT link2in:
channel[3] AT link3in:
antichannel[0] AT linkOout:
antichannel[l] AT linklout:
antichannel[2] AT link2out:
antichannel[3] AT link3out:

central.node(0,channel[0],channel{l],channel[2],channel[3],

antichannel[0],antichannel[l],
antichannel([2],antichannel[3])

PROCESSCR 1 T4

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

channel{4] AT linkOin:
channel[S] AT linklin:
channel[3] AT link2out:
channel{6] AT link3in:
antichannel(4] AT linkOout:
antichannel[5] AT linklout:
antichannel{3] AT link2in:
antichannel([6] AT link3out:

transp.vertical(l,channel(£],antichannel[3],channel[6],

channel[4],antichannel[5],channel[3],
antichannel([6)],antichannel[4])

PROCESSOR 2 T4

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

channel[7] AT linkOin:
channel[0] AT linklout:
channel([8] AT link2in:
channel[2] AT link3out:
antichannel([7] AT linkOout:
antichannel[0] AT linklin:
antichannel[8] AT link2out:
antichannel(2] AT link3in:

transp.horizontal(2,antichannel[2],channel[7],

antichannel[0],channel[8],
channel[2],antichannel(7],
channel(0],antichannel([8])
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PROCESSOR 3 T4 '

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

channel[5) AT linkOout:
channel[7] AT linklout:
channel[6] AT link2out:
channel[8] AT link3out:
antichannel[5] AT linkoOin:
antichannel([7] AT linklin:
antichannel(6] AT link2in:
antichannel{8] AT link3in:

transp.horizontal(3,antichannel([6],antichannel[8],
antichannel({5],antichannel([7],channel[6],
channel(8],channel[5],channel([7])
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APPENDIX B
04 TRANSPUTER NETWORK SOURCE CODE

This procedure handles the input and output from
Transputer

network.
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#USE "c:\tdsiolib\userio.tsr":

VAL linkOout IS 0: ' --- Variable
VAL linklout 1IS --- Declarations
VAL link2out IS
VAL link3out IS
VAL 1linkoOin IS
VAL linklin IS S:

VAL link2in IS 6:

VAL link3in IS 7:

CHAN OF ANY leftin,rightout,antirightout,antileftin:
PLACE leftin AT link3in:

PLACE rightout AT link3out:

PLACE antirightout AT link2out:

PLACE antileftin AT link2in:

BOOL go,turning:

VAL s IS 1l1l:

VAL esc IS 223:

VAL g IS 333:

VAL size IS 12:

INT w,tag,he,no,z,counter,txt:

[size] INT temp:

[size] INT recp:

[size] INT recpl:

[size] INT recp2:

(size] [size] INT trulyo:

[size] [size] INT trulyl:

[size] [size] INT truly2:

[size] [size] INT truly3:

[size] [gize] INT tx:

MNdLwnDDEHO
e e® 8% e oo

SEQ

no:=0Q

write.full.string (screen, " Enter the hot end
temperature")

read.echo.int (keyboard,screen,bhe,no)

newline(screen)

no:=0

write.full.string (screen, " Enter the propagation

rate ")
read.echo.int (keyboard,screen,w,no)
newline(screen)

88

PROC input.handler (CHAN OF ANY keyboard,screen)



SEQ
SEQ r = 0 FUR size
SEQ
temp [r] := 0
recp [r] := 0
recpl [r] := 0
recp2 [r] := 0
SEQ r = 0 FOR size
temp [r] := he
tag:= g
antirightout ! tag;w;temp
rightout | tag;w;temp
antirightout ! recp2
rightout ! recpl
turning := TRUE
SEQ
WHILE turning
PRI ALT
keyboard ? z
SEQ
IF
Z = asc
SEQ
SEQ
tag:= s

Array initialization

antileftin ? recp

leftin ? recp
antirightout ! tag;w;temp
rightout ! tag;w;temp
counter := 0

leftin ? truly0;truly2;

trulyl;truly3

WHILE counter < 4

SEQ

SEQ r = 0 FOR size - 1
SEQ

Printing the temp.
array

83

SEQ ¢ = 0 FOR size -~ 1
SEQ
tx:= trulyo

txt:= tx [r] [c¢]
write.int (screen,
txt,5)
SEQ 1 = 1 FPOR size - 1
SEQ
tx:= truly2
txt:= tx [r] [1)]
write.int (screen,
txt,5)
newllne(screen)




SEQ r = 1 FOR size - 1
SEQ
SEQ d = 0 FOR size - 1
SEQ
tx:= trulyl
txt:= tx [r] [d]
write.int (screen,
txt,s)
SEQ h = 1 FOR size - 1
SEQ
tx:=s truly3
txt:= tx [r] [h]
write.int (screen,
txt,5)
newline(screen)
counter:= counter + 4
turning := FALSE
newline(screen)
antileftin ? recpl
SEQ
leftin ? recp2
antirightout | tag;w;temp
rightout ! tag;w;temp
antirightout ! recp2
rightout ! recpl
newline(screen)
write.full.string(screen, "Type ANY to return to TDS")
INT any:
read.char(keyboard, any)
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VAL linkOout 1IS
VAL linklout 1IS
VAL link2out IS
VAL link3out 1IS
VAL link0Oin IS
VAL linklin IS
VAL link2in IS
VAL link3in IS 7:

[9] CHAN OF ANY channel,antichannel:

-=-- Channel declaration

NSNooieswdhh+H O

PROC central.node(VAL INT engine, CHAN OF ANY
leftin,topin,

rightin,bottomin,leftout, topout,rightout,
bottomout)

- — o G S S e D I S D D G IS W GER WM R SN G D D G G D G G N G S S AR G G S G G e S M G G S G T RS W M U S W S A W

#USE ‘"c:\tdsiolib\userio.tsr":
BOOL active :
VAL s IS 1li:
VAL g IS 333:
VAL size IS 12:
INT tag,w,tp,n:
[size] [size] INT square:
[size] (size] INT calcul:
[size] INT dummyO:
[size] INT dummyl:
[size] INT dummy2:
[size] INT dummy3:
[size] INT dummyd:
[size] INT sendar0:
[size] INT senderl:
[size] INT sender2:
[size] INT sender3:
[size] [size] INT temporal:
WHILE TRUE
SEQ
SEQ r= 0 FOR size
SEQ c= 0 FOR size
SEQ
square [r] [c] := 0
calcul [r] [c] := 0
temporal [r] [c] :=
SEQ r= 0 FOR size

0

SEQ --~ Array
dummy0 [r] := 0 -~ Initialization
dummyl [r] := 0
dummy2 [r] := 0
dummy3 [r] := 0
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dummyd [r] := 0
sander0 [r] :
senderl [r] :
sender2 [r]
sender3 [r)
active:= TRUE
n:= engine
WHILE active
SEQ
IF
n= 0
SEQ
topin ? tag;w;dummyl
rightout ! tag;w

LI B B
(oY oNoNe]

IF
tag= s
active:= FALSE
TRUE
SEQ
PAR
leftin ? dummy0 -~Communication
topin ? dummy4 -=- Block

rightin ?  dummy2

bottomin ? dummy3

leftout ! sender0

topout ! senderl

rightout ! =sender2

bottomout ! sender3

SEQ r = 0 FOR size

SEQ
square(r] [0] t= dummyl [r]
square([r] [size - 1] := dummy2

(r]

square[size - 1] [r] := dummy3

(r]
SEQ r = 1 FOR size - 2
-- Calculations
SEQ ¢ = 1 FOR size - 2
SEQ
tp:= ((w * square [r] [c] ) + (
square[r][c-1] + square
[r] [c + 1] + ( square [r-1]
[c] + square [r + 1] [¢]
)))) /(4 + w)
calcul [r] [c] := tp
SEQ r = 0 FOR size
calcul [r] [0]:= square(r] [0]
square :« calcul
SEQ r = 0 FOR size
SEQ
sender0 [r]:= square[r] [1l]
senderl ([r]:= square[l] [r]
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sender2 ([r]:= square[r][size-2]
sender3 ([r):= square(size-2][r]
Ne 1
SEQ
bottomin ? tag;w;dummy3
rightout | tag;w

IF
tag= s
active:= FALSE
TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummyl

rightin ?  dummy2
bottomin ? dummy4
leftout ! sender0
topout | senderl
rightout ! sender2
bottomout ! sender3
SEQ r = 0 FOR size
SEQ
square[r] [0] := dummy3 [r]
square{0] [r] := dummyl [r]
square([r] [size-l] := dummy2 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size -~ 2
SEQ
tp:= ((w * square[r][c])
+(square(r] [c-1] +
( square[r][c+l] +
(square(r-1][c] +
square [r + 1] [c] )))) /
(4+w)
calcul [r] [¢] := tp
SEQ r = 0 FOR size
calcul [r] [0] := square [r] [0)
square := calcul
SEQ r = 0 FOR size
SEQ :
sender) [r] := square [r] [1l]
senderl [r] := square [l)] ([r]
sender2 [r] := square[r][size-
2]
sender3 [r] := square [size - 2]
(r]
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SEQ
leftin ? tag;w

IF
tag= s
active:= FALSE
TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummyl

rightin ?  dummy2
bottomin ? dummy3
leftout | sender0
topout ! senderl
rightout | sender2
bottomout ! sender3
SEQ r = 0 FOR size
SEQ
square([r] [0] := dummyO [r]
square[size -1][r] := dummy3 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size ~ 2
SEQ
tpi= ((w * square[r](c]) + (
square ([r] [c-1]+( square
[r]) [c + 1] + (square
[r-1][c] + square[r + 1]
(el 1)) /7 (4 + w)
calcul [r] [c] := tp
square := calcul
SEQ r = 0 FOR size
SEQ
sender0 [rj := square [r] [1l]
senderl [r] := square [1] [r]
sender2 [r] := square[r]{size-2]
sender3 (r] := square [size - 2]
(r]
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n= 3

SEQ
leftin ? tag;w
IF
tag= s
active:= FALSE
TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummyl

riqghtin ? dummy2
bottomin ? dummy3
leftout ! sender0
topout ! senderl
rightout | sender2
bottomout ! sender3
SEQ r = 0 FOR size
SEQ
square(0] [r] := dummyl [r]
square[r] [0] := dummyO [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tp:= ((w * square[r] [c] ) + (
square [r][c-1] + ( square
[r] [ + l]+(Square [r-1]
[c] + square {r + 1] [c]
))))/ (4 + w)
calcul [r] [c] := tp
square := calcul
SEQ r =« 0 FOR size
SEQ
sender0 [r] := square [r] [1]
senderl [r] := square [1] [r]
sender2 [r] := square[r][size-2)
sender3 [r] := square [size ~ 2]
: [r]
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Ir

n=0
SEQ
bottomout ! square
rightin ? temporal
bottomout ! temporal
Nu2
SEQ
leftout ! square
N=3
SEQ
. rightout | square
nw=l
SEQ

topin ? temporal
bottomout ! temporal
topin ? temporal
bottomout ! temporal
bottomout ! square
leftin ? temporal
bottomout | temporal

PLACED PAR

PROCESSOR 0 T4

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

central.node(0,channel[0],channel[l],channel[2],

channel(0] AT linkOin:
channel[1] AT linklin:
channel[2] AT link2in:
channel[3] AT link3in:
antichannel (0] AT linkOout:.:
antichannel[l] AT linklout:

antichannel{2] AT link2out:

antichannel[3] AT link3out:

channel[3],antichannel(0],antichannel{1],

antichannel(2],antichannel[3])
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PROCESSOR 1 T4

PLACE channel{4] AT linkOin:

PLACE channel[5] AT linklin:

PLACE channel[3] AT link2out:

PLACE channel[6] AT link3in:

PLACE antichannel[4] AT linkOout:

PLACE antichannel[5] AT linklout:

PLACE antichannel([3] AT link2in:

PLACE antichannel(6] AT link3out:

central.node(1l,channel[5],antichannel[3],
channel[6],channel[4],antichannel(5],
channel[3],antichannel[6],antichannel(4])

PROCESSOR 2 T4

PLACE channel[7] AT linkOin:

PLACE channel([0] AT linklout:

PLACE channel{8] AT link2in:

PLACE channel[2] AT link3out:

PLACE antichannel([7] AT linkOout:

PLACE antichannel[0] AT linklin:

PLACE antichannel[8] AT link2out:

PLACE antichannel[2] AT link3in:

central.node(2,antichannel([2],channel([7],
antichannel[0],channel[8],channel([2],
antichannel[7]),channel[0],antichannell8])

PROCESSOR 3 T4

PLACE channel[5] AT linkOout:

PLACE channel{7)] AT linklout:

PLACE channel{6] AT link2out:

PLACE channel[8] AT link3out:

PLACE antichannel(5] AT linkoOin:

PLACE antichannel[7] AT linklin:

PLACE antichannel[6] AT link2in:

PLACE antichannel[8] AT link3in:

central.node(3,antichannel[6],antichannel[8],
antichannel{5],antichannel([7],channel([6],
channel([8],channel[5],channel[7])
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APPENDIX C
09 TRANSPUTER NETWORK SOURCE CODE
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#USE "c:‘tdslolib\userio.tsr":
VAL linkOout IS
VAL linklout IS
VAL link2out IS
VAL link3out IS
VAL linkOin IS
VAL linklin IS
VAL link2in IS
VAL link3in IS
CHAN OF ANY leftin rightout,antirightout,antileftin:
PLACE leftin AT link31n°

PLACE rightout AT link3out:

PLACE antirightout AT link2out:

PLACE antileftin AT link2in:

BOOL go,turning:

VAL s IS 11:

VAL esc IS 223:

VAL g IS 333:

VAL size IS 8:

INT w,tag,he,no,z,counter,counterl, txt:

[size] INT temp:

[size] INT recp:

[size] INT recpl:

[size] INT recp2:

[size] [size] INT truly:

[9][size] [size] INT true:

SEQ

\la\mthHO

no:=0

write.full.string (screen, " Enter the hot end
temperature ")

read.echo.int (keyboard,screen,bhe,no)

newline(screen)

no:=0

write.full.string (screen, " Enter the propagation
rate ")

read.echo.int (keyboard,screen,w,no)

newline(screen)

SEQ -- Array initialization
SEQ r = 0 FOR size
SEQ
temp [r]

= 0

recp [r] := 0
recpl {r] := O
recp2 [r] := O
SEQ r = 0 FOR size
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temp (r] := he
tag:= ¢
antirightout | tag;w;temp
rightout ! tag;w;temp
antirightout ! recp2
rightout | recpl
turning := TRUE
SEQ
WHILE turning
PRI ALT
keyboard ? z
SEQ
IF
2 = @sc
SEQ
SEQ
tag:= s
antileftin ? recp
leftin ? recp
antirightout { tag;w;temp
rightout ! tag;w;temp
counter := 0
counterl := 0
WHILE counter < 9
SEQ
antileftin ? truly
SEQ h = 0 FOR size
SEQ p = 0 FOR size
true [counter] [h] [p] :=
truly (h](p]
counter := counter + 1

SEQ
SEQ r = 0 FOR size - 1
SEQ
SEQ ¢ = 0 FOR size -
SEQ
txt:= true[counterl)] [r]
[=]
write.int (screen,txt,3)
SEQ 1 = 1 FOR size - 2
SEQ
txt:= true [counterl +

3] [r](l]
write.int (screen,txt,3)
SEQ d = 1 FOR size - 1
SEQ
txt:= true [counterl +
6] [r] [4]
write.int (screen,txt,3)
newline(screen)
counterl:= counterl + 1
SEQ r = 1 FPOR size - 2
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SEQ
SEQ ¢ = 0 FOR slze - 1
SEQ
txt:= true [counterl]
(r] [c]
write.int (screen,txt,3)
SEQ 1 = 1 FOR size - 2
SEQ
txt:= true [counterl +
3) [r] [1]
write.int (screen,txt,3)
SEQ d = 1 FOR size - 1
SEQ
txt:= true [counterl +
6] [r][d]
write.int (screen,txt,3)
newline(screen)
counterl:« counterl + 1
SEQ r = 1 FOR 8size - 1
SEy
SEQ ¢ = 0 FOR size - 1
SEQ
txt:=s true [counterl)
(r] [¢]
write.int (screen,txt,3)
SEQ 1 = 1 FOR size ~ 2

SEQ
txt:s true [counterl :
3] [r]\g_l]
write.int (screen,txt,3)

SEQ d = 1 FOR size - 1
SEQ
txt:= true [counterl +
6] [r] [d]
write.int (screen,txt,3)
newline(gcreen)
counterl:= counterl + 1
turning := PFALSE
newline(screen)
antileftin ? recpl
SEQ
leftin ? recp2
antirightout ! tag;w;temp
rightout ! tag;w;temp
antirightout ! recp2
rightout | recpl
newline(screen)
write.full.string(screen, "Type ANY to return to TDS")
INT any:
vead.char(keyboard, any)
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VAL linkOout IS 0
VAL linklout IS 1
VAL linkZout IS 2
VAL link3out IS 3:
VAL linkoOin IS 4:
VAL linklin IS 5§
VAL link2in IS 6
VAL link3in Is 7
[35] CHAN OF ANY ¢

B e S Thi U G S G A AAS VUL GUS N W UG A NS S G e GES G AMP PUR A G0 SN UND TN DI O S G W AN W GE A5G D R OG5 GI) TN O B M S0 G I G VNN @S WS G WO AR M

PROC central.node(VAL INT engine, CHAN OF ANY
leftin,topin,

rightin,bottomin,leftout, topout, rightout,
bottomout)
#USE "c¢:\tdsiolib\userio.tsr":
BOOL active : -=-Variable and array
declaration
VAL 8 IS 11l:

VAL g IS 333:
VAL size IS 8:
INT tag,w,tp,n:
[gize] [size] INT square:
[size] [9ize] INT calcul:
(size] [size] INT temporal:
[size] INT dummyoO:
[size] INT dummyl:
[size] INT dummy2:
[size] INT dummy3i:
[size]) INT dummyd:
[size] INT sendern:
[¢ize] INT senderl:
[siza] INT sender2:
(size] INT sender3:
WHILE TRUE
SEQ
SEQ r« 0 FOR =£ize
SEQ c« 0 FOR size
SEQ
square [r] [¢] :
calcul [r] [c] :
temporal [(r] [c] :
SEQ r= 0 FOR size
SEQ
dummyO [r] :w=
dummyl [r] :=
dummy2 [r] :=
dummy3 [r] =
dummyd [r] :=

w 0
- 0
= 0

[eReoReoNaje]
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sender0 (r]
senderl [r]
[§]

sender?
sender3 (r]
active:= TRUE
n:= engine
WHILE active
SEQ
IF
nN= §
SEQ :
leftin ? tag;w
rightout ! tag;w

REOR
(eNoNeoNeo

IF
tag= s
SEQ
active:= FALSE
topout | square
bottomin ? temporal
topout ! temporal
TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummyl

rightin ?  dQummy2
bottomin ? dummy3
leftout ! sender0
topout ! senderl
rightout { sender2
bottomout ! sender3
SEQ r = 0 FOR size
SEQ
square{0] (r] := dummyl [r]
square(r) [0] := dummy0l [r]
square[r]{size ~-1] :«= dummy2 [r]
square[size ~1][r] := dummy3 ([r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 POR size - 2
SEQ
tp:= ((w * square [r] [c] ) +
( square [r] [c~1] +
(square [r][c + 1] +
( square [r-1] [c] +
square [r + 1] [c] ))))/
(4 + w)
calcul (r] [c] := tp
sSquare := calcul
SEQ r = 0 FOR size
SEQ
sender0 [r)]:= square([r] [1]
senderl [r]:= square[l] (r]
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sender2 [r]:= square[r][size- 2]
sender3 [r]:= square[size-2][r]

PROC corner.node(VAL INT engine, CHAN OF ANY leftin, topin,
rightin,bottomin,leftout, topout, rightout
bottomout)

#USE “"c:\tdsiolib\userio.tsr":
BOOL active :
VAL s IS 1l:
VAL g IS 333:
VAL size IS 8:
INT tag,w,tp,n,counter0:
[size] [size]) INT square:
[size] [size] INT calcul:
[size] [size] INT temporal:
[size] INT dummyO:
[size] INT dummyl:
[size] INT dummy2:
(size] INT dummy3:
[size] INT dummyd:
[size] INT sendero(:
[(size] INT senderl:
(size] INT sender2:
[size] INT sender3:
WHILE TRUE
SEQ
SEQ re 0 FOR size
SEQ c= 0 FOR size
SEQ
square [r] [c] :=
calcul [r] [c] :=
temporal [r) [c]
SEQ r« 0 FOR size

0
0
tm 0

SEQ
dummyO [r] := 0
dummyl [r] := 0
dummy2 [r] := 0
dummy3 [r] := 0
dummyd [r] := O
sender0 (r] := 0
genderl [r] := 0
sender2 [r] := 0
gsander3 [r] := 0

active:= TRUE
n:= engine
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WHILE active
SEQ
IF
n= 0
SEQ
topin ? tag;w;dummyl
rightout ! tag;w
bottomout ! tag;w;dummyl
IF
tag= s
SEQ
counterQ:= 0
active:= FALSE
topout ! square
WHILE counter0 < 2
SEQ .
bottomin ? temporal
topout ! temporal
counter0 := counter0 + 1
WHILE counter0 < 8
SEQ
rightin ? temporal
topout ! temporal
counter0 := counter0 + 1

TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummy4

rightin ?  dummy2
bottomin ? dummy3
leftout ! sender
topout ! senderl
rightout | sender2
bottomout | sender3
SEQ r = 0 FOR size
SEQ
square[r] [0] := dummyl [r]
square{r][size- 1] := dummy2 [r]
square[size - 1][r]:= dummy3 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tpi= ((w * square ([r][c]) + (
square [r] [c-1] +
( square [r] [c + 1]
square [r-l1] [c]
square [r + 1][c])))
(4 + W)
calcul [r] [c] := tp
SEQ r = 0 FOR size
calcul [r] [0]:= square[r] [0]

+

(
+
) /
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square := calcul
SEQ r = 0 FOR size
SEQ
sender0 [r]:= square[r] [1]
senderl [r]:= square[l] [r]
sender2 [r]:= square[r][size- 2]
sender3 [r]:= sguare[size-2] [r]

h= 2
SEQ
bottomin ? tag;w;dummy3
rightout ! tag;w
IF
tag= s
SEQ
active:= FALSE
topout | square

TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummyl

rightin 2 dummy2
bottomin ? dummy4
leftout ! sender2
topout ! senderl
rightout | sender2
bottomout | senderl
SEQ r = 0 FOR size
SEQ
square(r] [0] := dummy3 [r]
squaref0] [r] := dummyl [r]
square(r] (size -1]:= dummy2 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size ~ 2
SEQ
tp:= ((w * square [r][c] ) + (
square [r] [¢c-1] +
( square [r] [c + 1] + (
square [r-1] [c] +
square [r + 1] [=] )))) /
(4 + w)
calcul [r] {c] := tp
SEQ r = 0 FOR size ‘
calcul [r] [0] := square [r] [0)]
square := calcul
SEg r = 0 FOR size
SEQ
senderl [r] := square [l1] [r]
sender2 [r]:= square([r][size-2]

105



N= 8
SEQ
leftin ? tag:w
rightout ! tag

IF
tag= s
SEQ
active:a FALSE
leftout ! squnre
bottomin ? temporal
leftout ! temporal
bottomin ? temporal
leftout ! temporal
TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummy 1

rightin ?  dummy2
bottomin ? dummy3

leftout | sendero0
topout ! sender3
rightout | sender0

bottomout | sender3
SEQ r = 0 FOR size
SEQ
square[r] [0] := dummy0 [r]
square(size -~ 1][r]:w dummy3 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tp:= ((w * square[r][c] ) + (
gquare [r] [c-1] +
( square [r] [c + 1] + {
square [r-1] [¢] +
square [r + 1] [c] )))) /
(4 + W)
calcul {r] [c] := tp
square := calcul
SEQ r = 0 FOR size
SEQ
sender0 [r):= square [r] [1l]
sender3 [r]:= square[size-2] [r)
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n= 10
SEQ
leftin ? tag;w

active:« FALSE
topout ! square
TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummyl
rightin ? dummy2
bottomia ? dummy3
leftout ! sender0
topout ! senderl
rightout | sender0
bottomout ! senderl
SEQ r = 0 FOR size
SEQ
square(0] [r] := dummyl [r)
squarse(r] [0) := dummyO [r)
SEQ r « 1 FOR size - 2
SEQ ¢ » 1 FOR size - 2
SEQ
tpiw ((w * square [r][c] ) + (
square [r] [¢c=1] +
( square [r] [c + 1] + (
square [r-1]) [c] +
square [r + 1] [c] )))) /
(4 + w)
calcul [r] [c] :~ tp
square := calcu
SEQ r « ) FOR size
SEQ
sender0 [r] := square [r] [1]
senderl (r)] := square [1] [r]

107




T SED GED W “Ee G0 Mk Sed D D S I WS TS fub e M e SR W G0% FUS W WD M TE) GMD GRD Gnn S SRS W S B G WD MRS GG G P4/ MR e G W N DY MDD A W GE G Gm

PROC cross.node(VAL INT engine, CHAN OF ANY leftin,topin,
rightin,bottomin,leftout, topout,
rightout,bottomout)

#USE '"c:\tdsiolib\userio.tsr":
BOOL active :
VAL s IS 1l1:
VAL g IS 333:
VAL size IS 8:
INT tag,w,tp,n,counterl:
(size] [size) INT square:
[size] [siza] INT calcul:
(size] [size] INT temporal:
(size] INT dummyO:
(size] INT dummyl:
[size] INT dummy2:
[(size] INT dummy3:
[slize] INT dummyd:
[size] INT sendero:
(size] INT senderl:
[size] INT sender2:
(9ize] INT sender3d: !
WHILE TRUE ‘
SEQ :
SEQ r« 0 FOR 8ize !
SEQ ¢« (0 FOR size i
SEQ - .
square [r] (c] @
calcul [r] [¢] ¢
temporal [r] [c]
SEQ r= 0 FOR size
SEQ
dummy0 [r] :
dummyl [r] :
dummy2 [r] :

= 0
s 0
HE V)

dummy3 [r]

dummyd [r]

sander0 [r)

senderl [r]

sender2 [r)

senderl [r]
active:= TRUE
n:= engine
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WHILE active
SEQ
IF
nm 1
SEQ
topin ? tag;w;dummyl
rightout ! tag;w

IF
tag= s
SEQ
active:= FALSE
topout | square
bottomin ? temporal
topout ! temporal
TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummy4

rightin ? dummy2
bottomin ? dummy3
leftout | sender2
topout ! senderl
rightout ! sender2
bottomout ! sender3
SEQ r = 0 FOR size
SEQ
square([r] [0] := dummyl [r)
square([r] [size =-1l]:= dunmy2 [r
square([size - 1l][{r]:= dummy3 [r
squaref0] [r] := dummyd [r]
SEQ r = 1 FOR size - 2
SEQ ¢ » 1 FOR size -~ 2
SEQ
tpi= ((w * square[r] [c] ) + (
square (r] [c-1] +
( square [r] [c + 1] + (
square [r-l] [c] +
square [r + 1j[¢] )))) /
(4 + w)
calcul [r] [c] := tp
SEQ r = 0 FOR size
calcul [r] [0]:= square(r] [0]
square := calcul
SEQ r = 0 FOR size
SEQ
senderl [r]:= square[l] [r]
sender2 [r]:= square{r][size -2]
sender3 (r]:= square[size-2] [r]

]
]
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n= 4
SEQ
leftin ? tag;w
rightout ! tag;w
IF
tag= s
SEQ
counterl := 0
active:= FALSE
leftout ? square
WHILE counterl < 2
SEQ
bottomin ? temporal
leftout ! temporal
counterl := counterl + 1
WHILE counterl < 5
SEQ
rightin ? temporal
leftout ! temporal
counterl := counterl + 1
TRUE
SEQ
PAR
leftin ? dummy’0
topin ? dummyl

rightin ? dummy 2
bottomin ? dummy3
leftout ! sender0
topout ! sender0
rightout ! sender2
bottomout ! sender3
SEQ r = 0 FOR size
SEQ
square(r] [0] := QummyO [r)
square([size-1] [r] := dummy3 [r]
square(r] [size-1] := dummy2 [r]
SEQ r = i FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tp:= ((w * square(r] [c] ) + (
square [r] [¢c-1] +
( square [r] [c + 1] + (
square [r-1] [c] +
square [r + 1] [c] )))) /
(4 + w)
calcul [r] [¢] := tp
square := calcul
SEQ r = 0 FOR slze
SEQ
sender0 [r] := square [r] [1]
sender2 [r] := square[r][size-2]
sender3 (r]:= square[size-2] [r]
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n= 6
SEQ
leftin ? tag;w
rightout ! tag;w
IF
tag= s
SEQ
active:= FALSE
topout ! square
TRUE
SEQ
PAR
leftin ? dumniy0
topin ? dummyl
rightin ? dummy 2
bottomin ? dummy3
leftout ! sender0
topout ! senderl
rightout ! sender2
bottomout ! sender2
SEQ r = 0 FOR size
SEQ
square[r] [0] := dummyO [r)
gsquare{0] [r] := dummyl [r]
square(r] [size-l] := dummy2 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tp:= ((w * square[r][c] ) + (
square [r] [c-1] +
( square [r] [c + 1] + (
square [(r-1] [¢] +
square [r + 1] [e] )))) /
(4 + w)
calcul [r] [c] := tp
square := calcul
SEQ r = 0 FOR size
- SEQ
sender0 [r]:= square [r] [1)]
senderl [r]:= square [1] [r]
sender2 [r]:= square [r][size-2]
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n= 9
SEQ
leftin ? tag;w
IF
tag= s
SEQ
active:= FALSE
topout ! square
bottomin ? temporal
topout ! temporal

TRUE
SEQ
PAR
leftin ? dummyO
topin ? dummy 1

rightin ? dummy 2
bottomin ? dummy3
leftout ! sender0
topout | senderl
rightout | sendero
bottomout ! sender3
SEQ r = 0 FOR size
SEQ '
square(size-1l][(t]:= dummy3 [r]
square[0] [r] := dummyl [r]
square[r] [0] := dummyO [r]
SEQ r « 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tp:= ((w * square[r][c]) + (
square [r] [c-1] +
( square [r] [c + 1] + ¢
square [r-1] [c] +
square [r + 1] [c])))) /
(4 + w)
calcul [r] [c] := tp
square := calcul
SEQ r = 0 FOR size
SEQ
sender0 [r]:= square [r] [1]
senderl [r]:= square [1] [r]
sender3 [r):= square [size-2][r)
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PROC transp.horizontal (VAL INT engine, CHAN OF ANY
leftin,topin,rightin,bottomin,
leftout,topout,rightout,
bottomout)

#USE "c:\tdsiolib\userio.tsr":
BOOL active:
VAL s IS 1ll:
VAL g IS 333:
VAL size IS 8:
INT tag,w,n:
[size] INT specl:
[size] INT spec2:
WHILE TRUE
SEQ
SEQ r = 0 FOR size
SEQ
specl [r] := 0
spec2 [r] := 0
n:= engine
active:= TRUE
tag:w g
WHILE active
SEQ
Ir
Ne 12
SEQ
leftin ? tag
bottomout ! tag
IF
tag= s
active:= FALSE
TRUE
SEQ
leftin ? specl
rightin? spec2
leftout | spec2
rightout ! specl
ne 13
SEQ
topin ? tag
bottomout | tag
IF
tag = s
active:= FALSE
TRUE
SEQ
leftin ? specl
rightin? spec2
leftout ! spec2
rightout ! speci
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n= 14
SEQ
topin ? tag
IF

tag = 8
active:= FALSE
TRUE
SEQ
leftin ? specl
r %htin? spec2
tout | spec2
rightout ! specl

PROC transp.vertical (VAL INT engine, CHAN OF ANY
leftin,topin,rightin,bottomin,
leftout topout rightout bottomout)

#USE  "c: \tdsiolib\usario.tsr“-
BOOL active:
VAL 8 IS 11l:
VAL g IS 333:
VAL size IS 8:
INT tag,w,n:
[size] INT specl:
[size] INT spec2:
WHILE TRUR
SEQ
SEQ r = 0 FOR size
SEQ
specl [r]
spec2 (r)
n:= engine
active:= TRUE
tag:= g
WHILE active
SEQ
IP
Ne 3
SEQ .
bottomin ? tag;w;specl
topout | tag ;W;spacl
rightout ! tag

0
0

tag-
active:= FALSE
TRUE
SEQ
bottomin ? specl
topout ! specl
topin ? spec2
bottomout | spec2
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Nw 7
SEQ
leftin ? g
rightout | tag
IP
tag =«
active:= FALSE
TRUE
SEQ
topin ? specl
hottomin? spec2
topout ! spec2
bottomout | specl
n= 1l
SEQ
leftin ? g
rightout | tag
IF
tag = 8
active:= FALSE
TRUE ’
SEQ
topin ? specl
bottomin? spec2
topout ! spocz
bottomout | mpecl

PROC noutxal node ( CHAN or ANY

leftin, topin,rightin, hottomin,
loftout topout, rightout,bottomout)

#USE "¢ \tdsiolib\userio tsr":
BOOL active:
VAL 8 IS 1ll:
VAL g IS 333:
INT tag:
WHILE TRUE
SEQ
active:= TRUE
tag:= g
WHILE active
SEQ
leftin ? tag
IF
tag= s
active:= FALSE
TRURE
SEQ
SKIP
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PLACED PAR
PROCESSO
PLACE
PLATE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

corner

--.--—-ul-—----——-—-—-—-———-—---u———-—-—-——————-.4——

R 0O T4

channel[0] AT linkOin:

channel[l] AT linklin:

channel[2] AT link2in:

channel(3] AT link3in:

antichannel(0] AT linkOout:

antichannel{l] AT linklout:

antichannel(2] AT link2out:

antichannel[3] AT link3out:

.node(0,channel(0],channel[l],channel[2],
channel[aj,antichannel[O],antichannel[l],
antichannel(2],antichannel[3])

PROCESSOR 8 Td

PLACE
PLACE
PLACE
PLACE
PLACY
PLACE
PLACE
PLACE

channel([5] AT linkOin:
channel([7] AT linklin:
channel[8] AT link2in:
channel[9] AT link3in:
antichannel(5] AT linkOout:
antichannel(7] AT linklout:
antichannel(8] AT link2out:
antichannel[9] AT link3out:

corner.node(8,channel(5],channel([7],channel(8],

channel([9],antichannel(5],
antichannel(7],antichannel(8],
antichannel([9])

PROCESSOR 2 T4

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

cornsr.node(2,channe

channel([17] AT linkoOin:

channel[12] AT linklin:

channel{18] AT link2in:

channel([19] AT link3in:

antichannel[17] AT linkOout:

antichannel[12] AT linklout:

antichannel[18] AT link2out:

antichannel[lQ{ AT link3out:
[17],channel[l2],channel[18],

channel([19],antichannel(17],

antichannel[12],antichannel[18],

antichannel(191])
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PROCESSOR 10 T4

PLACE channel[20] AT linkOin:

PLACE channel(l16] AT linklin:

PLACE channel[22] AT link2in:

PLACE channel[23] AT link3in:

PLACE antichannel[20] AT linkOout:

PLACE antichannel([16] AT linklout:

PLACE antichannel([22] AT link2out:

PLACE antichannel([23] AT link3out:
corner.node(10,channel[20],channel[16],channel[22],

channel{23],antichannel[20],antichannel([16],
antichannel[22],antichannel[23])

PROCESSOR 1 T4

PLACE channel([l10] AT linklout:

PLACE channel([3] AT link2out:

PLACE channel[11] AT link3out:

PLACE channel([12] AT linkOout:

PLACE antichannel({10] AT linklin:

PLACE antichannel{3] AT link2in:

PLACE antichannel(ll) AT link3in:

PLACE antichannel{l2] AT linkOin:

cross.node(l,antichannel(10],antichannel[3],
antichannel[ll],antichannel[l12],
channel(10),channel(3],
channel(ll],channel[l2])

PROCESSOR 9 T4

PLACE channel[13] AT linklout:

PLACE channel{9] AT link2out:

PLACE channel[l15] AT link3out:

PLACE channel[16] AT linkOout:

PLACE antichannel([13] AT linklin:

PLACE antichannel([9] AT link2in:

PLACE antichannel([15] AT link3in:

PLACE antichannel(l16] AT linkoOin:

crosgs.node(9,antichannel(13],antichannel(9],
antichannel[15],antichannel[16],
channel[13),channel[9],
channel[15],channel[16])




PROCESSOR 3 T4

PLACF channel[24] AT linkOout:

PLACE antichannel([30] AT linklout:

PLACE channel{[19) AT link2ocut:

PLACE channel({25] AT link3out:

PLACE antichannel[24] AT linkoOin:

PLACE channel[30] AT linklin:

PLACE antichannel[19] AT link2in:

PLACE antichannel[25] AT link3in:

transp.vertical(3,channel([30],antichannel([19],
antichannel([25],antichannel[24],
antichannel[30],channel[19],
channel[25],channel[24])

PROCESSOR 11 T4

PLACE antichannel([7] AT linkOin:

PLACE channel[26] AT linklin:

PLACE antichannel{23] AT link2in:

PLACE antichannel[29] AT link3in:

PLACE channel{[7] AT linkOout:

PLACE antichannel[26] AT linklout:

PLACE channel([23] AT link2out:

PLACE channel[29] AT link3out:

transp.vartical(ll}channol{ZG],antichannel[zaj,
antichannel[29)],antichannel[7],
antichannel[26],channel[23],
channel(29],channel([7]))

PROCESSOR 5 T4
PLACE channel[11)] AT link2in:
PLACE channel([6] AT link3in:
PLACE channel{13] AT linkOin:
PLACE channel[l4{ AT linklin:
PLACE antichannel[ll] AT link2out:
PLACE antichannel[6] AT link3out:
PLACE antichannel[13] AT linkOout:
PLACE antichannel[14] AT linklout:
central.node(5,channel[1l)],channel[6),channel[13]
channel{1l4],antichannel(ll],antichannel(6]
14]

antichannel(13],antichannel ;
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PROCESSOR 13 T4

PLACE channel([10] AT linkOin:

PLACE antichannel([28) AT linklin:

PLACE channsal{l15] AT link2in:

PLACE channel{27] AT link3in:

PLACE antichannel([10] AT linkOout:

PLACE channel[28] AT linklout:

PLACE antichannel([15] AT link2out:

PLACE antichannel([27] AT link3out:

transp.horizontal(l3,channel{l5],channel[27],

channel[10],antichannel([28],antichannel(15],

antichannel[27],antichannel[10],
channel[28])

PROCESSOR 7 T4

PLACE antichannel[26] AT linkOin:

PLACE channel[4) AT linklin:

PLACE channel[25] AT link2in:

PLACE channel{21] AT link3in:

PLACE channoltzsi AT linkoOout:

PLACE antichannel[4] AT linklout:

PLACE antichannel[25] AT link2out:

PLACE antichannel[21] AT link3out:

transp.vertical (7,channel[25],channel[2l],
antichannel([26],
channel([4),antichannel[25],
antichannel([21]),channel[26],
antichannel(4]) -

PROCESSOR 15 T4

PLACE channel([30] AT linkOout:

PLACE channel([32] AT linklout:

PLACE channel(29] AT link2in:

PLACE channel[3l] AT link3in:

PLACE antichannel(30] AT linkOin:

PLACE antichannel(32] AT linklin:

PLACE antichannel(29] AT link2out:

PLACE antichannel([3l] AT link3out:

neutral.node(channel[zsg,channel[31],channel[BO],
channel[32],antichannel{29],antichannel(31],
antichannel[30].antichannel[32])
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PROCESSOR 4 T4

PLACE channel{2] AT link3out:

PLACE channel[4] AT linkOout:

PLACE channel[S5] AT linklout:

PLACE channel{6] AT link2out:

PLACE antichannel([2] AT link?4n:

PLACE antichannel[4] AT linke .::

PLACE antichannel[5] AT linklin:

PLACE antichannel([6] AT link2in:

cross.node(4,antichannel[2],antichannel[4],
antichannel(5],antichannel[6],channel(2],
channel(4],channel([5],channel(6])

PROCESSOR 6 T4
PLACE channel[18] AT link3out:
PLACE channel[14] AT linkOout:
PLACE channel([20] AT linklout:
PLACE channel[21] AT link2ocut:
PLACE antichannel([18)] AT link3in:
PLACE antichannel{l4] AT linkOin:
PLACE antichannel[20] AT linklin:
PLACE antichannel([21)] AT link2in:
cross.node(6,antichannel[18],antichannel[14],
antichannel[20]),antichannel[21],channel[l8
channel{l4],channel[20],channel[21l

’

]
1)

PROCESSOR 12 T4

PLACE channel([32] AT linkOin:

PLACE antichannel(0] AT linklin:

PLACE antichannel([27] AT link2in:

PLACE antichannel(8] AT link3in:

PLACE antichannel[32] AT linkOout:

PLACE channel[0] AT linklout:

PLACE channel[27) AT link2out:

PLACE channel[8] AT link3out:

transp.horizontal(12,antichannel[8],channel([32],
antichannel{0],antichannel[27],channel(8],
antichannel(32],channel{0],channel[27])
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PROCESSOR 14 T4

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

transp.horizontal (14 ,antichannel[22],channel|2

channol[zei AT linkOin:
antichannel(17] AT linklin:
antichannel{31] AT link2in:
antichannel([22] AT link3in:
antichannel[28] AT linkOout:
channel{17] AT linklout:
channel[31] AT link2outl:
channel[22] AT link3out:

Y N

8]

antichannel([17],antichannel{3l

channel[22],antichannel[28],channel([17
channel[31])
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APPENDIX D
16 TRANSPUTER NETWORK SQURCE CODE

PROC input.handler (CHAN OF ANY keyboard,screen)

-- This procedura send the boundary conditions to
processors 0 and 3
-- on the network and display the information coming from
the

network

-- when it stops the network.

-~ Channel and link decla.
#USE  "c:\tdsiolib\userio.tsr":

VAL linkOout IS
VAL linklout 18
VAL link2out IS
VAL link3out IS
VAL linkoin IS
VAL linklin IS
VAL link2in 18
VAL link3in I8 7:
CHAN OF ANY leitin,rightout,antirightout,antileftin:
PLACE leftin AT link3in:
PLACE rightout AT link3out: -- placement of
PLACE antirightout AT link2out: -~ external channels
PLACE antileftin AT link2in:
VAL 8 IS 11:
VAL esc IS 223:
VAL g IS 333:
VAL size IS 6:
(size] INT temp: -~ Array declaratiens
[size] INT recp:
[size] INT recpl:
[size] INT recp2:
[size] [size] INT truly:
[16][size]) [sliza] INT true:
BOOL turning:
INT w,tag,he,no,z,counter,counter) ,txt:
SEQ
no:=0
write,full.string (screen, " Enter the hot end
temperature")
read.echo.int (keyboard,screen, he,no)
newline(screen)
no:=0
write.full.string (scr:en, " Enter the propagation
rate ")
read.echo.int (keyboard,screen,w,no) !
newline(screen)

oMW O
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SEQ
SEQ r = 0 FOR size
SZQ

-- Initialization of
-- arrays

temp [r] := O
recp [r] := 0
recpl [r] := 0
recp2 [r] := 0
SEQ r = 0 FOR sizse
temp [r] := he

tag:= g
angirightout ! tag;w;temp -- sending hot end and W
rightout ! tag;w;temp -- and start signal
antirightout ! recp2
rightout | recpl
turning := TRUE
SEQ
WHILE turning
PRI ALT
keyboard ?
SEQ
IPF
Z = esc
SEQ
SEQ
tag:= s
antileftin ? recp
leftin ? recp
antirightout ! tag;w;temp
rightout | tag;w;temp
counter := 0
counterl := 0
WHILE counter < 16 -~ receiving

2 ~-- recelve stop signal

SEQ -- arrays
antileftin ? truly
SEQ h = 0 FOR size
SEQ p = 0 FOR size
true [counter] [h] [p] :=

truly [h] [p]
counter := counter + 1

SEQ
SEQ r = 0 FOR size - 1
SEQ
SEQ ¢ = 0 FOR size - 1
SEQ

txt:= true [counterl]

[£] [c]
write.int (screen,txt,3)
SEQ 1 = 1 FOR size - 2
SEQ
txt:= true [counterl +
4] [r)] [4i)
write.int (screen,txt,3)
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SEQ £f = 1 FOR size - 2
SEQ
txt:= true [counterl +
8] [r](f]
write.int (screen, tkt,3)
SEQ d = 1 FOR size - 1
SEQ
txt:= true [counterl+l2]
(r] [d4]
write.int (screen, txt,3)
newline(screen)
counterl:= counterl + 1
SEQ r = 1 FOR size - 2
SEQ
SEQ ¢ = 0 FOR size -~ 1
SEQ
txt:= true [counterl]
(r] [c]
write.int (screen,txt,3)
SEQ 1 = 1 FOR size - 2
SEQ
txt:= true[counterl+d)
(][]
write.int (screen,txt,3)
SEQ f = 1 FOR size - 2
SEQ
txt:= true [counterl +
8] {r](f]
write.int (screen,txt,3)
SEQ d = 1 FOR size - 1
SEQ
txt:= true [counterl+l2)
[r][d]
write.int (screen,txt,3)
newline(screen)
counterl:= counterl + 1
SEQ r = 1 FOR size - 2
SEQ
SEQ ¢ = 0 FOR size - 1
SEQ
txt:= true [counterl)
[r] [c]
write.int (screen,txt,3)
SEQ 1 = 1 FOR size - 2
SEQ
txt:= true [counterl +
4] [rl[1l]
write.int (screen,txt,3)
SEQ f = 1 FOR size - 2
SEQ
txt:= true [counterl +

81 [r] [f]
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write.int (screen,txt,3)
SEQ d = 1 FOR size - 1
SEQ
txt:= true [counterl +
12][r][4]
write.int (screen,txt,3)
newline(screen)
counterl:= counterl + 1
SEQ r = 1 FOR size ~ 1
SEQ
SEQ ¢ = 0 FOR size - 1
SEQ
txt:= true [counterl)
(r] (<]
write.int (screen,txt,3)
SEQ 1 = 1 FOR size - 2
SEQ
txt:= true [counterl +
4] [r] [1]
write.int (screen,txt,3)
SEQ f = 1 FOR size - 2
SEQ
txt:= true[counterl+8]
(r] [£]
write.int (screen,txt,3)
SEQ d = 1 FOR size -~ 1
SEQ
txt:= true [counterl+l2}
[rjd]
write.int (screen,txt,3)
. newline(screen)
turning := FALSE
newline(screen)
antileftin ? recpl
SEQ
leftin ? recp2
antirightout { tag;w;temp
rightout ! tag;w;temp
antirightout | recp2
rightout ! recpl
newline(screen)
write.full.string(screen, "Type ANY to return to TDS")
INT any:
read.char(keyboard, any)
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----- VAL linkOout IS 0:
VAL linklout IS 1:
VAL link2out IS 2:
VAL link3out IS 3:
VAL linkOin IS 4:
VAL linklin IS 5:
VAL link2in IS 6:
VAL link3in IS 7:
[33) CHAN OF ANY channal,antichannel:

s Gp GE A - . - ey . T G R P GEP G S D N S A G G S G GPD WD GPN GV WE G G D KD Gn M W N W AP SRS G G BNy et S e GAS M W M S G NS TR SRS WS A0 @

PROC central.node(VAL INT engine, CHAN OF ANY
leftin,topin,rightin, bottomin,
leftout, topout, rightout,bottomout)

-~ This procedure does the calculations for nodes at the
center -~ of the network

. A . S A WY G SN D AR @ SED W SMS GRS W) WD WD NS O W S ML W G G W T T G G I D A M SR g G e VS D T G AGS FEM W M
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----- VAL 8 IS 1l1:
VAL g IS 333:
VAL size IS 6:
[size] [size] INT square:
[size] [size] INT calcul:
(size] INT dummyoO:
[size] INT dummyl:
[size] INT dummy2:
(size] INT dummy3:
[size] INT dummy4:
[size] INT sender0:
[size] INT senderl:
(size] INT sender2:
[size] INT sender3:
[size] [size] INT temporal:
BOOL active :
INT tag,w,tp,n:
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WHILE TRUE

SEQ
SEQ r= 0 FOR size -- Initialization of arrays
SEQ ¢c= 0 FOR size
SEQ
square [r] [c] := 0
calcul [r] [c] := 0
temporal [r] [c] := O

SEQ r= 0 FOR size
SEQ
dummy0 [r] @
dummyl [r] :
dummy2 [r] :
dummy3 [r] :
dummy4 [r] :
sender0 [r]
senderl [r]
sender2 [r]
gander3d [r)
active:= TRUB
N:= engine
WHILE active
SEQ
IF :
(ne 5) OR (n= 9)-- code for processors 5 and 9
SE

00000

-
-
»
-
L
.
.
3
.
[3
.
[]
.

| I I
(e Yo NoReo]

leftin ? tag;w --receiving start/stop
rightout | tag;w -- sending start/stop

active:= FALSE ~-- checking for stop
topout | square -~ routing code to
bottomin ? temporal
topout ! temporal
bottomin ? temporal
topout | temporal

TRUE . '

SEQ ~- Communications receive

PAR -- gend boundaries

- conditions
leftin ? dummy0
topin ? dummy1
rightin ? dummy 2
bottomin ? dummy3
leftout ! sendero0
topout ! senderl
rightout | sender2
bottomout ! sender3
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SEQ r = 0 FOR size
SEQ
square[0] [r] := dummyl [r]
square[r] [0] := dummyO [r]
square[r] [size - 1) := dummy2 [r]
square[size - 1] [r] := dummy3 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tp:= ((w * square [r][c] ) + (
square [r] [c-1] +
( square [r] [c + 1] + (
square [r=l1] [c] +
square [r + 1] [c] )))) /
(4 + w)
calcul [ri [c] := tp
square := calcu
SEQ r = 0 FOR size
SEQ
sender0 [r]:= square(r] [1]
senderl ([r]:= asquare[l] [r)
sender2 (rj]:= square{r][size- 2]
senderl [r]:= square[size-2] [r]
(= 6) OR (n= 10) -- code processors 6 and 10
SEQ -- in the network
leftin ? ta

fag
rightout | tag:w

SEQ -~ checking stop
active:= FALSE
togout | square ~-- routing code
bottomin ? temporal
topout ! temporal

TRUE
SEQ
PAR -~ COMMUNICATIONS BLOCK
leftin ? dummy0
topin ? dummyl

rightin ?  dummy2
bottomin ? dummy3

leftout ! sendero
topout | senderl
rightout | sender2

bottomout ! sender3
SEQ * = 0 FOR size
Sky
square(0] (r] := dummyl [r] )
square(r] [0] := dummyO [r]
square[r] [size-1l] := dummy2 [r]
square[size -1][(r] := dummy3 [r]
SEQ r = 1 FOR size - 2
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SEQ ¢ = 1 FOR size - 2

SEQ

tp:= ((w * square [r][c] ) + (
square [r] [c~1] +
( square [r] [C + l] + (

square
square

(4 + W)

[z-1] [c] +
(e + 1] [e] )/

calcul [ri [e¢] := tp

square := calcu

SEQ r = 0 FOR size

SEQ
sender0 (r]:=
senderl [r]:w
sender2 [r):=
senderld [r]:=

square(r] [1)
square(l] [r]
square(rj[size~ 2]
square[size- 2](r)

D D S N D G A VIR e M T S WD G WD O WS TEY W G EEh PN GED GUD A0 GG BN N GEA B G G B GUN GNO Gt A0 N FED WD LS DA GAS D el MED BN M Var TRO W k0 484 WD eEE

PROC corner.node(VAL INT engine, CHAN OF ANY
leftin,topin,rightin,bottomin,
leftout topout,rightout,bottomout)

-= This procedure drives the execution of the processors
at the corners
-= of the array

G S S G S S D SIS G0 W S G VT IR I WD A A SR N R G A S WS EDD G Sy W GO TN GED GEN W G4 BN UED GHN AL SME AN GRS GNS BN G GuS GHG S0P LN WIS W A B M0 WS e

#USE

"e:\tdaiolib\userio.tasr":

s D Gge G AED Em) G W W SRS SEN MAN BED WS Al B B G Brb S0 S5 GNS G G G EI U BEE BAD TS EEN MAE Bl S A AS A 0D Wil Y4 A END WD I 56 W M A0 M BE Gm G W b

VAL 8 IS 1ll:
VAL g IS 333:
VAL size IS 6:
[size] INT square:
(size] INT calcul:
(size] INT tempcral-

[size)
[size]
[size]
[size]
[(size]
[size)
[size]
[size]
[gize]
[size]
[size]
[size]

BOOL active

INT
INT
INT
INT
INT
INT
INT
INT
INT

dummyo:
dummyl.:
dummy?2:
dummy3:
dummy4 :

sender0:
senderl:
sender2:
gender3:

*
L]

INT tag,w,tp,n,countero(:
WHILE TRUE
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SEQ
SEQ r= 0 FOR size -~ Initialization of arrays
SEQ ¢= 0 FOR size
SEQ
square [r] [c]
calcul [r] [¢])
temporal [r] [
SEQ r= 0 FOR size
SEQ
sammy0 [r] ¢
dummyl [r] :
dummy2 [r]
dummy3 [r] :
dummyd [r] :
sender0 [r)]
gsenderl [r]
sender2 [r)
wsnderd (r]
active:= TRUE
:= sngine
WHILE active
SEQ
IF
ne 0 -=- code for processor 0
870
topin ? tag;w;dummyl
rightout ! tag;w
bottomout ! tag;w:dummyl
i

e oo so o« B B % R B
O0O00O00O

[eJeoNoXeo)

tage 3
" SEQ -=- checking for stop
counterd:= 0
active:= FALSE
topout ! square
WHILE counter0 < 3
SEQ -- gcreen array information
bottomin ? temporal
topout | temporal
counter0 := counter0 + 1
WHILE counterQ < 15
SEQ
rightin ? temporal
topout | temporal
c¢ounter0 := counter0 + 1

TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummy4

rightin ?  dummy2
bottomin ? dummy3
leftout ! sander0
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SEQ

n= 3
SrQ
bottom
topout

rightout |
IF

tag=
SE

TRUE
SE

topout ! senderl
rightout | sender2
bottomout ! sender3
SEQ r = 0 FOR size
SEQ
square[r] [0] := dummyl [r]
square[r) [size - 1] := dummy2([r]
aquare(size - 1] [r] := dummy3([r]
SEQ r « 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2

tpiw ((w * square [r] [c] ) +(
square [r] [c-1] +
( square [r] [¢c + 1] + (
square [r-l1] [¢c] +
square [r + 1] [c] )))) /
(4 + W)
calcul [r] [¢] := tp
SEQ r = 0 FOR size
caleul [r] (0):= square[r] [O0]
square := calcu
SEQ r « 0 FOR size
SEQ
sender0 [r]:= square[r] [1)]
-senderl [r]:= aquare[l] [r]
sender2 [r]:= square[r][size-2]
sender3 ([r]:= square[size-2][r]

~= code for processor 3

in ? ﬁag:w:dummya
! tag;w;dummya
ag;w

]
Q
active:= FALSE
topout | square

Q
PAR

leftin ? dummy0
topin ? dummyl
rightin ? dummy2
bottomin ? dummy4

leftout ! sender?2
topout ! senderl
rightout | sender2

bottomout | senderl

SEQ r = 0 FOR size
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SEQ
square(r] [0] := dummy3 [r)
square(0] [r] := dummyl [r)]
square(r] [size -1]:= dummy2 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tp:= ((w * square[r][c]) + (
square [r] [c-1] +
( square [r] [c + 1] + {
square [r-l] [c] +
square (r + 1] [c] )))) /
(4 + W)
calcul [r] [c] := tp
SEQ r « 0 FOR size
calcul [r) [0] i= square [r] [0]
square := caicul
SEQ r = 0 FOR size
SEQ
senderl [r] := square[l] [r]
sender2 [r] := square[r][size-2]

ns 12 ~-- code for processor 12
SEQ
leftin ? tag:w
IF
tag= &3
SEQ
counterd := 0
active:= FALSE
leftout 1 square
WHILE counter(0 < 3
SEQ
bottomin ? temporal
leftout ! temporal
counterO:= counter0 + 1

TRUE
SEQ
PAR
leftin ? dummy©
topin ? dummy 1

rightin ?  dummy2
bottomin ? dummy3
leftout ! sender0
topout ! sender3
rightout ! sendero
bottomout ! sender3
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SEQ r = 0 FOR size
SEQ
square(r] [0] := dummy0 [r]
square(size - l][(r]:= dummy3 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tpi= ((w * square [r][c] ) + (
square (r] [c-1] +
( square [r] [C + 1] + (
square [r-1] [c] +
square (r + 1] [c] ))))/
(4 + w)
calcul [r] [c] := tp
square := calcul
SEQ r = 0 FOR size
SEQ
sender0 [r] :=square [r] [1]
senderl [r] :w=square [size-2][r)

-- code for processor 15

Q
leftin ? tag;w

tag= s

SEQ
active:= PFALSE
topout | sguare

TRUB

SEQ
PAR
leftin ? dummy0
topin ? dummyl

rightin ? dummy2
bottomin ? dummy3
leftout | sender(
topout | senderl
rightout ! sender0
bottomout ! senderl
SEQ r = 0 FOR size
SEQ
square(0] [r] := dummyl [r]
square(r] [0] := dummyO0 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR s8ize - 2
SEQ
tpi= ((w * square [r][c] ) + (
square [r] [c-1] +
( square [r] [c + 1] + (
square [r~1] [c] +
square [r + 1] [c] )))) /
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(4 + W)
calcul [r] [c] := tp
square := calcul
SEQ r = 0 FOR size
SEQ
sender0 [r] := gquare [r] [1]
senderl [r] := square [1] [r]
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PROC cross.node(VAL INT engine, CHAN OF ANY
leftin, topin,rightin,bottemin,
leftout, topout rightout bottomout)

-=- This procedure drives the processors which are
gituated

-- forming a

~-- croos at the square network
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-- declarations of arrays, variables and constant

VAL s IS 11:

VAL g IS 333:

VAL size IS 6:

[size] [size] INT square:
[size] [size] INT calcul:
{size] [size] INT temporal:
(8ize] INT dummyo:

[size] INT dummyl:

[size] INT dummy2:

[size] INT dummy3:

[size] INT dummyd:

(size] INT sendero:
[size] INT senderl:
[¢ize] INT sender2:
[size] INT sender3:

BOOL active :

INT tag,w,tp,n,counterl:

WHILE TRUE
SEQ
SEQ r= 0 FOR size -~ Initialization of arrays
SEQ ¢c= 0 FOR slze
SEQ
square [r] [c] = O
calcul [r] [c] := 0
temporal [r] [c] := 0

SEQ r= 0 FOR size
SEQ

dummy0 [r] 0

dummyl [r) 0
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dummy2 [r]
dummy3 [r]
dummyd [r]
sender0 [r]
senderl [r]
sender2 [r]
sender3 [r)
active:= TRUE
n:« engine
WHILE active
SEQ
IF
ns 1 -=- code for processor 0l
SEQ
topin ? tag;w;dummyl
rightout ! tag;w
IFt -- sending start/stop signal
ag= s
SEQ -=- checking for stop
active:= FALSHE
topout ! square -- routing code
bottomin ? temporal
togout { temporal
bottomin ? temporal
topout | temporal

[eReXe]

2000

TRUE
SHQ
PAR
leftin ? dummy0
. topin ? dummy4
rightin ? dummy2
bottomin ? dummy3
leftout | sender2
topout ! senderl
rightout { gsender2

bottomout ! sender3
SEQ r « 0 FOR size
SEQ ‘
square(r) [01 tw dummyl ()
square(r] [(slize -l1]:= dummy2 [r]
square(size - 1][r]:= dummy3 [r]
square(0] [(r] := dummyd [r]

SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
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tp:= ((w * square [r][c] ) + (
square (r] [c-1] +
( square [r] [c + 1] + (
square [r-1] [c] +
square [r + 1] [c] )))) /
(4 + W)
calcul [r] [c] := tp
SEQ r = 0 FOR size
calcul (r] [0]:= square[r] [0]
square := calcu
SEQ r = 0 FOR size
SEQ
senderl [r]:= square[l] [r]
sender2 [r]:= square[r){size-2]
sender3 [r]:= square[size-2] [r]

Ne 2 -- code for processor 2
SEQ
bottomin ? tag;w;dummyl
rightout | tag;w
IF
tag= s
. SEQ
active:= FALSE
togout ! square
bottomin ? temporal
topout | temporal

TRUE
SEQ
PAR
leftin ? dummyo0
topin ? dummy4

rightin ? dummy2
bottomin ? dummy3
leftout | sender2
topout | senderl
rightout | sender2
bottomout ! sender3
SEQ r = 0 FOR size
SEQ
square([r] [0] := dummyl [r]
square[ri (8ize~1] := dummy2 [r]
square(size - 1l][r] :e dummy3[r]
square[0)]) [r] := dummyd [r)
SEQ r = 1 FOR size -~ 2
SEQ ¢ = 1 FOR size - 2
SEQ
tp:w ((w * square [r][c]) + (
square [r] [c~1] +
( square [r] [¢ + 1] +
square [r-1] [c] +
square [r + 1] [c] )))) /
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(4 + W)
calcul [r] [c] := tp
SEQ r = 0 FOR size
calcul [r] [0]:= square[r] [0]
square := calcul
SEQ r = 0 FOR size
SEQ
senderl [r]:= square[l] [r]
sender2 [r]:= square[r][size- 2]
sender3 [r]:= square[size-2][r]

n= 4 -- code for processor 4
SEQ
leftin ? tag;w
rightout | tag;w

counterl := 0
active:= FALSE
leftout ? square
WHILE counterl < 3
SBEQ
bottomin ? temporal
leftout | temporal
counterl := counterl + 1
WHILE counterl < 11l
SEQ
rightin ? temporal
leftout | temporal
counterl :» counterl + 1
TRUB
SEQ
PAR
leftin ? durmy 0
topin ? dummy 1
rightin ? dummy2
bottomin ? dummy3

leftout ! sender0
topout ! sendero
rightout | sender2

bottomout ! sender3

SEQ r = 0 FOR size
SEQ
Squars{L] (O] .+~ duiunyl {&]
square(size ~1])[(r] := dummy3 [r]
square(r] [size-1] := dummy2 [r)
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SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tpi= ((w * square[r] (c] ) + (
square [r] [c-1] +
( square [r] [c + 1] + (
square [r-1] [c] +
square [r + 1] [c] )))) /
(4 + w)
calcul [r] [c] := tp
square := calcul
SEQ r « 0 FOR size
SEQ
sender(0 [r] := square[r][1l)
sender2 [r] := square(r][size-2)
sender3d [r] := square[size-2][r]

Ne 8 -- code for processor 8
SEQ
laftin ? tag;w
rightout | tag;w
P

tag= s
SEQ
counterl := 0
active:w FALSE
leftout ? square
WHILE counterl ¢ 3
SEQ
bottomin ? temporal
leftout | temporal
counterl :w counterl + 1
WHILE counterl ¢ 7
SEQ
rightin ? temporal
leftout ! temporal
counterl := counterl + 1

TRUE
SEQ
PAR
leftin ? dummy0Q
topin ? dummy 1

rightin ?  dummy2

bottomin ? dummy3

leftout ! sander0

topout | sender0

rightout ! asaender2

bottomout | sender3

SEQ r = 0 FOR size

)y
square([r] [0] := dummyO [r)
square(size - 1][(r]:= dummy3 [r]
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square(r](size -1] := dummy2 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tp:= ((w * square(r][c] ) + (
square [r] [c-1)] +
( square [r] [c + 1] + {
square [r-1] [c] +
square [r + 1] [c] )))) /
(4 + w)
calcul [r] [c] := tp
square := calcul
SEQ r = 0 FOR size
SEQ
sender0 [r] := square[r] [1)]
sender2 [r] := square[r][size-2]
sender3 [r] := square[size-2][r]

(n= 7) OR (n= 1ll1) -~ code processor 7 and 11
SE

leftin ? tag:w
rightout ! tag;w
IF
tag= s
SEQ
active:= FALSE
~ topout | square
. TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummy 1
rightin ?  dummy2
bottomin ? dummy3
leftout ! sender0
topout ! senderl
rightout ! sender2
bottomout ! sender2
SEQ r = 0 FOR size
SEQ
square(r] [0] := dummyO [r]
square(0] [r] := dummyl [r]
square[r| [size~ 1]:= dummy2[r]

SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
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tpi= ((w * square [r] [c])+ (
square [r] [c~-1] +
( square [r] [c + 1] + (
square [r-l] [c] +
square [r + 1] [c] )))) /
(4 + W)
calcul [r] [c] := tp
square := calcul
SEQ r = 0 FOR size
SEQ
sender0 [r] := square [r] [1)]
senderl [r] := square [l] [r]
sender2 [r] := square[r][size-2]

n= 13 -- code for processor 13
SEQ
leftin ? tag;w
IF
tags g
SEQ
active:= FALSE
topout | square
bottomin ? temporal
topout ! temporal
bottomin ? temporal
topout ! temporal

TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummyl

rightin ? dummy2
bottomin ? dummy3
leftout | sender0
topout ! senderl
rightout ! sender0
bottomout ! sender3
SEQ r = 0 FOR size
SEQ
square(0] [r] := dummyl [r]
square[r] [0] := dummyO [r]
square([size - 1l][r]:= dummy3 [r]
SEQ r = 1 FOR size - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tp:i= ((w * square [r][c]) + (
square (r] [c-1] +
( square [r] [c + 1] + (
square [r-1] [c] +
square [r + 1] [c] )))) /
(4 + w)
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calcul [r] [c] := tp
square := calcul
SEQ r = 0 FOR size
SEQ
sender0 [r] := square [r] [1l]
senderl [r] := square [l] [r]
sender3 [r] := square[size-2][r]

ns 14 -- code for processor 14
SEQ
leftin ? tag;w
IF
tag= s
SEQ

active:= FALSE
topout ! square
bottomin ? temporal
topout | temporal

TRUE
SEQ
PAR
leftin ? dummy0
topin ? dummyl

rightin ? dummy2
bottomin ? dummy3

leftout ! sendero
topout | senderl
rightout ! sendero

bottomout ! sender3
SEQ r = 0 FOR size
SEQ
square[0] [r] := dummyl [r)
square[r] [0] := QummyO0 [r]
square[size - l][r]:= dummy3 [r]
SEQ r ~ 1 FOR 8ize - 2
SEQ ¢ = 1 FOR size - 2
SEQ
tpi= ((w * square [r][c] ) + (
square [r] [¢c-1] +
( square [r] [¢c + 1] + (
square [r-1] [c] +
square [r + 1] [c] )))) /
(4 + w)
calcul (r] [c] := tp
square := calcul

SEQ r = 0 FOR size
SEQ
gender0 [r) := sqguare [r] [1]
senderl ([r] := square [1] [r]
sender3 [r] := square[size-2][r]
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PLACED PAR
PROCESSOR 0 T4

PLACE channel{0] AT linkoOin:

PLACE channel[l] AT linklin:

PLACE channel[2] AT link2in:

PLACE channel[3] AT link3in:

PLACE antichannel[0]j AT linkOout:

PLACE antichannel([l] AT linklout:

PLACE antichannel[2] AT link2out:

PLACE antichannel[3] AT link3out:

corner.node(0,channel[0],channel[l],channel[2],
channel[3],antichannel[0],antichannel(l],
antichannel[2],antichannel([3])

PROCESSOR 8 T4

PLACE channel[5] AT linkOin:

PLACE channel{7] AT linklin:

PLACE channel([8] AT link2in:

PLACE channel[9] AT link3in:

PLACE antichannel[5] AT linkOout:

PLACE antichannel(7] AT linklout:

PLACE antichannel([8] AT link2out:

PLACE antichannel[9] AT link3out:

cross.node(8,channel[5],channel([7],channel([8],
channel[9],antichannel([5],antichannel[7],

antichannel[8],antichannel([9])
PROCESSOR 2 T4

PLACE channel[17] AT linkoOin:

PLACE channel[12] AT linkilin:

PLACE channel[18] AT link2in:

PLACE channel[19] AT link3in:

PLACE antichannel[l7] AT linkOout:

PLACE antichannel([12] AT linklout:

PLACE antichannel[18] AT link2out:

PLACE antichannel{19] AT link3out:

cross.node(2,channel[17],channel[12].channel[18],
channel[19),antichannel[17],antichannel{12],

antichannel[l18],antichannel{19])
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PROCESSOR 10 T4
PLACE channel[20] AT linkOin:
PLACE channel[16] AT linklin:
PLACE channel{22] AT link2in:
PLACE channal(23] AT 1ink?3in:
PLACE antichannel[20] AT linkOout:
PLACE antichannel{16) AT linklout:
PLACE aatichannel([22] AT link2out:
PLACE antichannel[23] AT link3out:
central.node(10,channel{20],channel[16],channel[22],
channel[23],antichannel[20],antichannel[16],
antichannel[22],antichannel[23])
PROCESSOR 1 T4
PLACE channel[10] AT linklout:
PLACE channel[3] AT link2out:
PLACE channel[1l] AT link3out:
PLACE channel[l12] AT linkOout:
PLACE antichannel([10] AT linklin:
PLACE antichannel([3] AT link2in:
PLACE anticha&nnel[1l] AT link3in:
PLACE antichannel([l12] AT linkoin:
cross.node(l,antichannel[10],antichannel([3],
antichannel[1ll],antichannel{12],channel[10],
channel([3],channel(ll],channel[12])
PROCESSOR 9 T4
PLACE channel[13] AT linklout:
PLACE channel(9] AT link2out:
PLACE channel[15] AT link3out:
PLACE channel[16] AT linkOout:
PLACE antichannel(13] AT linklin:
PLACE antichannel({9] AT link2in:
PLACE antichannel{15] AT link3in:
PLACE antichannelgls] AT 1linkOin:
central.node(9,antichannel(13],antichannel[9]
antichannel(15],antichannel[16],channel[13]
6]

chennel(9)],channel([15],channel[l 3
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PROCESSOR 3 T4

PLACE channel([24] AT linkQout:

PLACE antichannel[30] AT linklout:

PLACE channel[19] AT link2out:

PLACE channel[25] AT link3out:

PLACE antichannel[24] AT linkOin:

PLACE channel[30] AT linklin:

PLACE antichannel([19] AT link2in:

PLACE antichannel[25] AT link3in:

corner.node(3,channel({30],antichannel(19],
antichannel[25],antichannel{24],
antichannel([30],channel[19],
channel[25],channel[24])

PROCESSOR 11 T4
PLACE antichannel([7] AT linkOin:
PLACE channel({26) AT linklin:
PLACE antichannel[23] AT link2in:
PLACE antichannel([29] AT link3in:
PLACE channel[7] AT linkoOout:
PLACE antichannel([26] AT linklout:
PLACE channel[23] AT link2out:
PLACE channel[29] AT link3out:
cross.node(1l,channel[26),antichannel[23],
antichannel[29],antichannel([7],
antichannel[26],channel[23],channel[29],
channel([7])

PROCESSOR 5 T4

PLACE channel[l1l] AT link2in:

PLACE channel[6] AT link3in:

PLACE channel[13] AT linkOin:

PLACE channel[l4] AT linklin:

PLACE antichannel[11] AT link2out:

PLACE antichannel[6] AT link3out:

PLACE antichannel[13] AT linkOout:

PLACE antichannel[14] AT linklout:

central.node(5,channel(11],channel([6],channel[13],
channel[14],antichannel[1l1],antichannel([é6],
antichannel(13],antichannel[14])
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PROCESSOR 13 T4

PLACE channel[10] AT linkOin:

PLACE antichannel([28] AT linklin:

PLACE channel[15] AT link2in:

PLACE channel[27] AT link3in:

PLACE antichannel[10] AT linkOout:

PLACE channel[28] AT linklout:

PLACE antichannel([15] AT link2out:

PLACE antichannel([27] AT link3out:

cross.node(13,channel[15],channel[27],channel{10],
antichannel[28],antichannel[15],
.antichannel[27],antichannel[10],
channel[28])

PROCESSOR 7 T4

PLACE antichannel[26] AT linkOin:

PLACE channel(4] AT linklin:

PLACE channel{25] AT link2in:

PLACE channel[21] AT link3in:

PLACE channel[26] AT linkOout:

PLACE antichannel([4] AT linklout:

PLACE antichannel[25] AT link2out:

PLACE antichannel([21] AT link3out:

cross.node(?,channal[ZS],channel£21],antichanneltzs],
o " channel[4],antichannel[25),antichannel[2l],

channel[26),antichannel[4])

PROCESSOR 15 T4 '
PLACE channel[30] AT linkoOout:
PLACE channel[32] AT linklout:
PLACE channel[29) AT link2in:
PLACE channel[31) AT link3in:
PLACE antichannel([30] AT linkOin:
PLACE antichannel[32] AT linklin:
PLACE antichannel(29] AT link2out:
PLACE antichannel([31] AT link3out:
corner.node(15,channel[29],channel[31],channel[30],
channel[32],antichannel[29],
antichannel(31],antichannel[30],antichannel[32))
PROCESSOR 4 T4
PLACE channel[{2] AT link3out:
PLACE channel[4] AT linkOout:
PLACE channel([5] AT linklout:
PLACE channel[6] AT link2out:
PLACE antichannel([2] AT link3in:
PLACE antichannel[4] AT linkOin:
PLACE antichannel[5] AT linklin:
PLACE antichannel(6] AT link2in:
cross.node(4,antichannel{2],antichannel[4],
antichannel(5],antichannel([6],channel[2],
channel(4],ch&nnel(5],channel[6])
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PROCESSOR 6 T4

PLACE channel[l18] AT link3out:

PLACE channel[l4] AT linkOout:

PLACE channel[20] AT linklout:

PLACE channel[21] AT link2out:

PLACE antichannel([18) AT link3in:

PLACE antichannel({l4] AT linkOin:

PLACE antichannel[20] AT linklin:

PLACE antichannel([21] AT link2in:

central.node(6,antichannel[18],antichannel[14],
antichannel[20],antichannel{21],channel[18],
¢hannel[l4],channel[20],channel[21])

PROCESSOR 12 T4

PLACE channel([32] AT linkOin:

PLACE antichannel{0] AT linklin:

PLACE antichannel{27] AT link2in:

PLACE antichannel([8] AT link3in:

PLACE antichannel[azi AT linkOout:

PLACE channel[0] AT linklout:

PLACE channel[27] AT link2out:

PLACE channel[8] AT link3out:

corner.node(12,antichannel([8],channel({32],

antichannel[0],antichannel[27],channel[8],
antichannel[32],channel[0],channel[27])

PROCESSOR 14 T4
PLACE channel([28] AT linkOin:
PLACE antichannel(17] AT linklin:
PLACE antichannel[31] AT link2in:
PLACE antichannel(22] AT link3in:
PLACE antichannel[28] AT linkOout:
PLACE channel[17] AT linklout:
PLACE channel[31] AT link2out:
PLACE channel[22] AT link3out:
cross.node(l4,antichannel[22],channel(28],
antichannel[17],antichannel[31],
channol[zzi,antichannel[28],
channel[17],channel[31])
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APPENDIX E

EXPANDABLE CHANNEL PLACEMENT

{((
{{{ define link/channel numbers - T4
VAL linkOout IS 0:

VAL linklout 1IS l:

VAL link2out IS 2

VAL link3ocut IS 3:

VAL linkOin IS 4:

VAL linklin IS 5:

VAL link2in IS 6:

val link3in Is 7:

1))

{({{ create internal mapping arrays
VAL left.to.right.in IS [linkOin,

link2in] :

VAL right.to.left.in I8 [link2in,
linkoin) :
VAL ' top.to.bottom.in IS [linklin,
linksin% t
VAL Dbottom,to,top,in I3 [link3in,

linklin] : .

VAL left.to.right.out
[link2out,linklout,link3out,linkOout ] :
VAL right.to.left.out
[linkOout,link3out,linklout,link2out ] :
VAL top.to.bottom.out
{link3out,link2out,linkOcut,linklout ] :
VAL bottom.to.top.out
[linklout,linkOout,link2out,link3out ] :

link3in,
linklin,
linkoin,
link2in,

linklin,
link3in,
link2in,
linkOin,
IS
IS
IS
IS

-- each soft channel i3 associated with a table which is

indexed

-- when the soft channel is placed on to a hard channel.

1))
({{ declare size structure
VAL n IS 4:
VAL, p IS n:
VAL q 18 n:

VAL nodes IS p * q:

1))

{(({
[nodes)

declare size channels

CHAN left.to.right,
right.to.left:

CHAN tog.to.bottom,
bottom.to.top:

[nodes + 1]

11
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(dec.machine + (nodes - q)) \ nodes:

{{{ node 1l

{(({ declaration of constants

VAL 1 IS 0:

VAL j IS 0:

VAL dec.machine IS 0:

VAL left IS

VAL right IS dec.machine:

VAL bottom IS dec.machine:

VAL top IS nodes:

VAL map.index IS ((J\2)*2) + (i\2):

1))
PROCESSOR 1 T4

{({ placement of channels

PLACE left.to.right [left) AT left.to.right.in
{map.index]:

PLACE left.to.right [right] AT left.to.right.out
(map.index]:

PLACE right.to.left [right] AT right.to.left.in
[map.index]:

PLACE right.to.left [left] AT right.to.left.out
[map.index%:

PLACE op.to.bottom [top] AT top.to.bottom.in
[(map.index]:

PLACE top.to.bottom [bottom] AT top.to.bottom.out
(map.index]:

PLACE  bottom.to.top [bottom] AT bottom.to.top.in
[(map.index]:

PLACE bottom.to.top [top] AT

bottom.to.top.out[map.index]:

11}
node (1, left.to.right [left],left.to.right [right],
right.to.left [right], right.to.left [left],

tog.to.bottom
bott

om.to.top
1))
{{({ node q '
{({ declaration of constants
VAL i IS O:
VAL § IS g-1:
VAL dec.machine IS g-1:
VAL left Is
VAL right IS dec.machine:
VAL bottom IS dec.machine:
VAL dec.] IS (3 + (g-1)) \ g
VAL top IS dec.j + (1 * q)
VAL map.index IS ((3\2)*2) + (41\
1))
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[top], top.to.bottom [bottom],
[bottom], bottom.to.top [top] )

(dec.machine + (nodes - q)) \ nodes:

*
.
.
.
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PROCESSOR gq T4
{({( placement of channels

PLACE left.to.right [left] AT left.to.right.in
[map.index]:

PLACE left.to.right [right] AT left.to.right.out
[map.index]:

PLACE right.to.left [right] AT right.to.left.in
[(map.index]:

* PLACE right.to.left [left] AT right.to.left.out

(map.index]):

PLACE  top.to.bottom [top] AT top.to.bottom.in
(map.index]:

PLACE top.to.bottom [bottom] AT top.to.bottom.out
(map.index]:

PLACE bottom.to.top [bottom] AT bottom.to.top.in
[map.index]:

PLACE bottom.to.top [top] AT
bottom.to.top.out[map.index]: '

11}

node (g, left.to.right [left),left.to.right [right],
right.to.left [right], right.to.left [left],
tog.to.bottom [top], top.to.bottom [bottom],
bottom.to.top [bottom], bottom.to.top [top] )

1)1}

VAL L IS 0:

PLACED PAR J = 1 for (g-2)
VAL dec.machine IS j + (i * q)
VAL machine IS dec.machine + 1

e e

PROCESSOR machine T4

({( evaluate indices

VAL left IS (dec.machine 4+ (nodes-q)) \ nodes:
VAL right IS dec.machine:

VAL bottom IS dec.machine:

VAL dec.j IS (3 + (g-1)) \ q:

VAL top IS dec.j + (1L * q)

VAL map.index IS ((J\2) * 2) + (i\2) :

-- position of node within the B003




{({{ placement of channels

PLACE left.to.right [left) AT left.to.right.in
[map.index]:

PLACE left.to.right (right]) AT left.to.right.out
[map.index]:

PLACE right.to.left [right) AT right.to.left.in
[map.index]:

PLACE right.to.left [left] AT right.to.leit.out
[map.index]:

PLACE top.to.bottom [top] AT top.to.bottom.in
[map.index]:

PLACE top.to.bottom {bottom] AT top.to.botoom,out
(map.index]:

PLACE bottom.to.top [bottom] AT bottom,tu.top.in
(map.index]:

PLACE bottom.to.top [top] AT
bottom.to.top.out[map.index]:

1))

node (machine, left.to.right [left],left.to.right [right],
right.to.left [right)], right. to.left [left],
top.to.bottom [ tog% top.to.bottom [bottom],
bottom.to.top [bottom], bottom.to.top [top] )

PLACED PAR 1 = 1 FOR (p = 1)
PLACED PAR J = 0 FOR Q
YAL dec.machine IS J + (1 * q) :
VAL machine IS dec.machine + 1 :
PROCESSOR machine T4

(¢ evaluate indices

VAL left IS (dec.machine + (nodes-q)) \ nodes:
VAL right IS dec.machine:

VAL bottom I8 dec.machine:

VAL dec.]j IS (4 + (g-1)) \ q:

VAL top IS dec.j + (1 * q) :

VAL map.index IS ((3\2) * 2) + (1\2) :
-- position of node within the B003

group.
1)}

{{( placement of channels

PLACE left.to.right [left] AT left.to.right.in
(map.index]:

PLACE left.to.right [right) AT left.to.right.out
(map.index]:

PLACE right.to.left (right) AT right.to.left.in
(map.index}:

PLACHE right.to.left [left) AT right.to.left.out
[map.index]:

PLACE top.to.botteom [top] AT top.to.bottom.in
[map.indaxg:

PLACE op.tn.bottom (bottom] AT top.to.bottom.out

[map.index):
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PLACE  bottom.to.top [bottom] AT bottom.to.top.in
[map.index]:

PLACE bottom.to.top [top] AT
bottom.to.top.out[map.index]:

1))

node (machine, left.to.right [left],left.to.right [right],
right.to.left [right)], right.to.left [left],
top.to.bottom [top], top.to.bottom [bottom],
bottom.to.top [bottom], bottom.to.top [top] )

11}

In this appendix we start the placement from processor 01l
on.

The placement of channels in the I/0Q handler is as follows:

{{{

CHAN OF ANY leftin,rightout,antirightout,antileftin:
PLACE leftin AT link3in:

PLACE rightout AT link3ocut:

PLACE antirightout AT link2out:

PLACE entileftin AT link2in:

1))
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